New research measures effects of human activities on groundwater systems

Posted 21 April 2016

The geotechnical centrifuge is also known as the ‘environmental time machine’

By Rick Arena

Researchers at the UNSW Connected Waters Initiative (CWI) have developed new methods for measuring how the properties of groundwater systems can be affected by activities such as extraction and mining.

Groundwater in confined aquifers is contained by layers of substrate such as clay that have low permeability. Called aquitards, these layers limit the rate at which the aquifer can be recharged by water moving through them, and can act as a barrier to external contaminants entering the aquifer.

"Low permeability barriers can be naturally occurring clay or rock, or constructed of clay and engineered materials," said Dr Timms of the UNSW School of Mining Engineering, who led the research team.

However, human activities can change the way aquitards limit the flow of water through them. Extraction of groundwater can stress aquitard materials by causing subsidence and compaction.

"Where mining occurs near water bodies, wetlands or farming land, these barriers to groundwater flow can be very important," Dr Timms said. "There is increasing need to improve the engineering design of flow barriers, and computer modelling predictions of natural barriers to flow."

The CWI team developed a technique to simulate these changes experimentally and measure how the hydraulic properties of the aquitard materials can change in response to these stresses.

Compacted, or 'tight', clay collected from an aquitard near Gunnedah in the Namoi catchment in NSW, was analysed at the CWI Centrifuge Permeameter Facility and the mining geo-mechanics laboratories at UNSW.

Using the geotechnical centrifuge, Dr Steve Bouzalakos found that the hydraulic permeability of the tight clay could change depending on stress conditions. The variations in stress in the experiment simulated the stressing of aquitard materials affected by activities such as extraction of large volumes of groundwater or by mining and coal seam gas developments.

The geotechnical centrifuge is also known as the ‘environmental time machine’. Accelerated gravity is used to gradually speed up processes that usually occur over time periods measured in years or decades to help evaluate the long-term effects of changes in the subsurface environment.

In related research, Dr Richard Crane and Dr Wendy Timms pioneered a new technique to analyse tight clays at the CWI Centrifuge Permeameter Facility. In a world first, an interrupted-flow centrifuge method was developed to show how small flow channels could allow leakage through the normally relatively impermeable materials that comprise aquitards. These preferential flow paths could be activated through aquitards if there are differences between groundwater pressures above and below the aquitard materials.

These findings have implications at scales ranging from individual sites to basins and catchments in which activities occur that affect the subsurface environment by extraction of groundwater or modification to aquitards.

"The research is of benefit to mining and agricultural communities, by improving predictions of barriers to groundwater flow," said Dr Timms.

Funded by the Australian Research Council, through the National Centre for Groundwater Research and Training, the research outcomes are reported in a number of publications.

Links to recent journal papers

  • Bouzalakos, S., Crane R.A, McGeeney, D., Timms W.A.  2016, Stress-dependent hydraulic properties of clayey-silt aquitards in Eastern Australia. Acta Geotechnica, published online 12/4/2016. http://link.springer.com/article/10.1007%2Fs11440-016-0455-7
  • Crane RA; Cuthbert MO; Timms W, 2015, 'Technical Note: The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media', Hydrology and Earth System Sciences, vol. 19, no. 9, pp. 3991 - 4000, http://dx.doi.org/10.5194/hess-19-3991-2015
  • Timms WA; Crane R; Anderson DJ; Bouzalakos S; Whelan M; McGeeney D; Rahman PF; Acworth RI, 2016, 'Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale', Hydrology and Earth System Sciences, vol. 20, no. 1, pp. 39 - 54, http://dx.doi.org/10.5194/hess-20-39-2016
  • Bouzalakos S; Crane R; Liu H; Timms WA, 2014, 'Geotechnical and modelling studies of low permeability barriers to limit subsurface mine water seepage', in McIntyre N; Wiertz J (eds.),Proceedings of the 4th International Congress on Water Management in Mining, presented at 4th International Conference on Water Management in Mining, Vina del Mar, Chile, 28 - 30 May 2014,http://www.waterinmining.com/english/proceedings

Click here for more CWI publications.

Latest news

Spotlight on mining and water with Dr Wendy Timms

Spotlight on mining and water with Dr Wendy Timms

10 November 2017

Dr Wendy Timms talks about her many hats and why diversity is critical in sustainable mining practice.

Read more…

Groundwater ‘pit stops’ enabled survival and migration of our ancient ancestors

Groundwater ‘pit stops’ enabled survival and migration of our ancient ancestors

1 June 2017

African groundwater helped kick-start the evolutionary history of humans, with the movement of our ancestors across East Africa shaped by the location of springs, new research suggests.

Read more…

CWI team member gives keynote address at Water Institute for Sustainability Forum in Thailand

CWI team member gives keynote address at Water Institute for Sustainability Forum in Thailand

9 February 2017

Connected Waters Initiative research fellow Dr Landon Halloran was a keynote speaker at the Water Institute for Sustainability Forum in Bangkok, Thailand in January 2017.

Read more…

CWI team member appointed to mining industry advisory panel

CWI team member appointed to mining industry advisory panel

3 November 2016

Dr Wendy Timms was recently appointed to the Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development (IESC).

Read more…

CWI at IAH 2016

CWI at IAH 2016

6 October 2016

CWI team members presented their research at the recent 43rd annual congress Hydrogeology Congress in Montpellier, France.

Read more…