World breakthrough on salt-tolerant wheat

Posted 12 March 2012

Salt-tolerant durum wheat grown in northern New South Wales as part of a field trial. (Photo: CSIRO).

A team of Australian scientists involving the University of Adelaide has bred salt tolerance into a variety of durum wheat that shows improved grain yield by 25% on salty soils.

Using 'non-GM' crop breeding techniques, scientists from CSIRO Plant Industry have introduced a salt-tolerant gene into a commercial durum wheat, with spectacular results shown in field tests. Researchers at the University of Adelaide's Waite Research Institute have led the effort to understand how the gene delivers salinity tolerance to the plants.

The research is the first of its kind in the world to fully describe the improvement in salt tolerance of an agricultural crop - from understanding the function of the salt-tolerant genes in the lab, to demonstrating increased grain yields in the field.

The results are published today in the journal Nature Biotechnology. The paper's senior author is Dr Matthew Gilliham from the University's Waite Research Institute and the ARC Centre of Excellence in Plant Energy Biology. Lead authors are CSIRO Plant Industry scientists Dr Rana Munns and Dr Richard James and University of Adelaide student Bo Xu.

"This work is significant as salinity already affects over 20% of the world's agricultural soils, and salinity poses an increasing threat to food production due to climate change," Dr Munns says.

Dr Gilliham says: "Salinity is a particular issue in the prime wheat-growing areas of Australia, the world's second-largest wheat exporter after the United States. With global population estimated to reach nine billion by 2050, and the demand for food expected to rise by 100% in this time, salt-tolerant crops will be an important tool to ensure future food security."

Domestication and breeding has narrowed the gene pool of modern wheat, leaving it susceptible to environmental stress. Durum wheat, used for making such food products as pasta and couscous, is particularly susceptible to soil salinity.

However, the authors of this study realised that wild relatives of modern-day wheat remain a significant source of genes for a range of traits, including salinity tolerance. They discovered the new salt-tolerant gene in an ancestral cousin of modern-day wheat, Triticum monococcum.

"Salty soils are a major problem because if sodium starts to build up in the leaves it will affect important processes such as photosynthesis, which is critical to the plant's success," Dr Gilliham says.

"The salt-tolerant gene (known as TmHKT1;5-A) works by excluding sodium from the leaves. It produces a protein that removes the sodium from the cells lining the xylem, which are the 'pipes' plants use to move water from their roots to their leaves," he says.

Dr James, who led the field trials, says: "While most studies only look at performance under controlled conditions in a laboratory or greenhouse, this is the first study to confirm that the salt-tolerant gene increases yields on a farm with saline soils.

Field trials were conducted at a variety of sites across Australia, including a commercial farm in northern New South Wales.

"Importantly, there was no yield penalty with this gene," Dr James says.

"Under standard conditions, the wheat containing the salt-tolerance gene performed the same in the field as durum that did not have the gene. But under salty conditions, it outperformed its durum wheat parent, with increased yields of up to 25%.

"This is very important for farmers, because it means they would only need to plant one type of seed in a paddock that may have some salty sections," Dr James says.

"The salt-tolerant wheat will now be used by the Australian Durum Wheat Improvement Program (ADWIP) to assess its impact by incorporating this into recently developed varieties as a breeding line."

Dr Munns says new varieties of salt-tolerant durum wheat could be a commercial reality in the near future.

"Although we have used molecular techniques to characterise and understand the salt-tolerant gene, the gene was introduced into the durum wheat through 'non-GM' breeding processes. This means we have produced a novel durum wheat that is not classified as transgenic, or 'GM', and can therefore be planted without restriction," she says.

The researchers are taking their work a step further and have now crossed the salt-tolerance gene into bread wheat. This is currently being assessed under field conditions.

Source: The University of Adelaide Media Release

Links

Latest news

Floating though the dolines

Floating though the dolines

24 July 2020

Are you a fan of ABC's Conversations with Richard Fidler? Well, you might want to take a listen to this episode of the program with subterranean ecologist Stefan Eberhard.  

Read more…

New questions over Shenhua water modelling

New questions over Shenhua water modelling

24 July 2020

Take a listen to ABC Radio National Breakfast's segment on the controversial $1.5 billion Shenhua thermal coal mine on the New South Wales Liverpool Plains. Research undertaken by UNSW's leading groundwater expert Professor Ian Acworth indicates that the company's water modelling is flawed.

Read more…

Ban on toxic mercury looms in sugar cane farming, but Australia still has a way to go

Ban on toxic mercury looms in sugar cane farming, but Australia still has a way to go

18 July 2020

CWI's Professors Cameron Holley and Darren Sinclair and Australian National University's Professor Simon Haberle and Larissa Schneider recently contributed to The Conversation, discussing federal authorities announcement of "an upcoming ban on mercury-containing pesticide in Australia", highlighting Australia is "one of the last countries in the world to do so, despite overwhelming evidence over more than 60 years that mercury use as fungicide in agriculture is dangerous." 

Read more…

Ancient water to drain from farmland without ongoing joint management

Ancient water to drain from farmland without ongoing joint management

1 July 2020

The management of withdrawals of ground water in the Central West remains an area of hotly-contested debate. Associate Professor of Hydrogeology Bryce Kelly has spent over a decade studying groundwater in the Central West, and has credited groundwater with “saving rural communities from collapse”, but its potential for future drought-proofing depends on how successfully it’s managed. He says current withdrawals “will only be sustainable if the Narromine region gets flooded frequently enough to balance the volume of groundwater extracted."

Read more…

GWI Global Water Matters Podcast

21 June 2020

The UNSW-GWI Global Water Matters Podcast was launched in 2020 to share interesting and important water-related developments and insights from global experts across the broad spectrum of water-related disciplines. Born from the demand to continue the Water Issues Commentary seminar series under the constraints of social distancing, new episodes are released monthly.

Read more…