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Basic Questions
Impacts of Changing Land Use on Water Resources

• Why is it important?

• What impacts does changing land use have on water 
resources and how can we quantify these impacts?

• Where are similar impacts documented globally?

• How can we use the understanding of impacts to develop 
sustainable water resources?
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How much water do you consume each day?



• Drinking (2 – 5 L/d/p)

• Washing, sanitation, household tasks (50 – 200 L/d/p)

Renault and Wallender, 2000
Molden and Fraiture, 2006

How much water do you consume each day?



• Drinking (2 – 5 L/d/p)
• Washing, sanitation, household tasks (50 – 200 L/d/p)

• Diet: 

– 2,600 L/d/p (vegetarian) 

– 5,400 L/d/p (nonvegetarian)

• Proposed diet: 3000 cal/d/p; water requirements ~ 1 L/cal

Renault and Wallender, 2000
Molden and Fraiture, 2006

How much water do you consume each day?



• Drinking (2 – 5 L/d/p)
• Washing, sanitation, household tasks (50 – 200 L/d/p)
• Diet: 

– 2,600 L/d/p (vegetarian) 
– 5,400 L/d/p (nonvegetarian)

• Proposed diet: 3000 cal/d/p; Water requirements ~ 1 L/cal

Liters of water required to produce 1 kg of product
• Bovine meat 13,500
• Poultry/Pork 4,300
• Cereals 700 – 1,400
• Fruits 450 
• Vegetables   150 

Renault and Wallender, 2000
Molden and Fraiture, 2006

How much water do you consume each day?
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Basic Questions
Impacts of Changing Land Use on Water Resources

• Why is it important?

• What impacts does changing land use have on water 
resources and how can we quantify these impacts?

• Where are similar impacts documented globally?

• How can we use understanding to develop 
sustainable water resources?



Land-Cover Types in the US (1992)
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Irrigated Cropland

Qi et al., 2002



Impacts of Land-Use Change on Groundwater

• Impact on groundwater quantity

– groundwater level monitoring

– GRACE satellite 
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Causes of Increased Recharge Beneath 
Rainfed Agriculture

D ↑ or R↑ = P ↑ – ET ↓ – R0 ↓

where D is drainage, R is recharge, P is precipitation, ET is 
evapotranspiration, and R0 is runoff.



Precipitation in the Southern High Plains
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McGuire, 2004

Impact of Land Use 
Change on 
Groundwater Levels
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Methods
GRACE
Gravity Recovery
and Climate Expt.

Launched March
2002

Spatial resolution:
~ 200,000 km2

Terrestrial water 
storage



From Gravity to Mass
• Satellites detect changes in Earth’s gravity field by monitoring 

changes in distances between the satellites to within 10 μm

• Observed monthly changes in gravity are attributed to changes 
in water distribution in the atmosphere, surface water, soil 
water, and groundwater

http://gracetellus.jpl.nasa.gov/

http://gracetellus.jpl.nasa.gov/


Strassberg et al., 2006

GRACE Seasonal Terrestrial Water Storage
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Strassberg et al., 2006

Comparison of GRACE Seasonal Terrestrial 
Water Storage with Measured Data
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Land Use (1992) Groundwater Level 
Change



Recharge = 
Specific Yield Δh/Δt

Recharge Estimation from Water Level Rises in Rainfed Agriculture
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Impacts of Land-Use Change on Groundwater

• Natural ecosystems: no change in groundwater storage

• Irrigated agriculture:
– ~ 4 m decrease in WT over High Plains, 1950 -2003
– ~ 40 m decrease in WT over 10,000 km2 area in southern 

HP, 1950 – 2003
– Seasonal WT fluctuations can be monitored by GRACE 

satellite

• Rainfed agriculture
– ~ 7 m increase in WT over 3,400 km2 area in southern HP = 

recharge rate of 23 mm/yr



Unsaturated Zone as Archive of Land-Use and Climate-
Change Impacts on Water Resources

• Natural ecosystems: 

– Playa focused recharge

– Long-term (≤ 10,000 yr) drying in interplaya 
settings

• Rainfed agriculture: 

– Increased drainage/recharge

– Salt mobilization
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Playa Distribution

High Plains ~ 50,000 playas

Southern High Plains: 
~ 16,000 playas
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Water table

QAd2331Cx

100

25

20

15

10

0

30

35

40

45

Playa
Interdrainage

Chloride as a Qualitative Indicator of Water Movement
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precipitation

Chloride in soil water
is inversely related to 
water flux

low Cl --- high water flux

high Cl --- low water flux

Plants exclude Cl during
evapotranspiration



Chloride as a Tracer of Water Movement
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Salt Reservoirs Beneath Natural Ecosystems
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Natural Ecosystems

• Recharge focused beneath playas

• Little or no recharge in interplaya settings during the 
Holocene (~ 10,000 – 15,000 yr) 

• Buildup of salts caused by drying of profiles
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Location of Flushed and Partly 
Flushed Profiles



Chloride Profile beneath 
Rainfed Agriculture
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Quantitative
Chloride Mass Balance 
(CMB)
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Quantitative
Chloride Mass Balance 
(CMB)
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Distribution of Recharge Beneath Rainfed Agriculture 
(southern High Plains)
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Time Lag Between Drainage and 
Recharge

Average water table depth in southern High Plains = 30 m

Time since cultivation began (yr)
0 50 100 150 200

R
ec

ha
rg

e/
D

ra
in

ag
e 

(m
m

/y
r)

0

10

20

30

40
R

ec
ha

rg
e 

(m
m

/y
r)



Impact of Cultivation on Regional Recharge
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Salt Mobilization Caused by Rainfed Agriculture
Chloride (mg/kg)
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Impact of Increased Recharge on 
Groundwater Salinity
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Causes of Differences in Recharge beneath 
Natural and Agricultural Ecosystems

• Perennial natural vegetation versus annual crops

• Cropland in southern High Plains is fallow from late 
November to early June

• Roots in perennial native vegetation are much deeper 
than those in cropland and can remove episodic deep 
drainage



Heat Dissipation Sensor Monitoring Station



Matric Potential Monitoring, Natural Ecosystem 
(Muleshoe National Wildlife Refuge)
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Rainfed Agriculture

• Groundwater-level rises: mean recharge 24 mm/yr over 3,400 km2

area = 5% of precipitation

• UZ profiles, varying levels of flushing, log normal distribution of 
recharge, mean 33 mm/yr

• Time lag between drainage and recharge ~ 60 yr

• Under new equilibrium conditions, volumetric recharge rate would be 
increased by up to a factor of 8 relative to pre-agricultural recharge 
rates.

• Mobilization of salts…chloride and sulfate

• Salt mobilization would increase groundwater TDS by up to 1.7 to 2.5 
times depending on saturated thickness.  



Irrigated Agriculture (Salt Accumulation)
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What is the Impact of Deep Plowing in 
Areas of Low Permeability Soils?



Deep Plowed Cropland
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Basic Questions
Impacts of Changing Land Use on Water Resources

• Why is it important?

• How can we quantify impacts?

• What impacts does changing land use have on water 
resources?

• Where are similar impacts documented globally?

• How can we use understanding to develop sustainable 
water resources?



Impact of Land Use Change and Climate 
Variability in Water Resources in Niger

Niger

Studied since 1990s
Hapex-Sahel
Af. Monsoon Multidiscip. Analysis



Groundwater Level Rises Caused by 
Cultivation, Niger

Favreau et al., 
2002, GW
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Land Clearance in Australia, Early 1900s



Impact of Rainfed Agriculture on Water Resources, Australia

Cook et al., 2001, CSIRO

R ≤ 0.1 mm/yr

R ≤ 50 mm/yr



Chloride Reservoirs in Mallee Vegetated Areas

Jolly et al., 1989, J. Hydrol.

Clp = 4 mg/L

Profiles drying for up to 30,000 yr

Recharge ≤ 0.1 mm/yr
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Comparison of Chloride Reservoirs in Australia and the 
Southern High Plains
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Basic Questions
Impacts of Changing Land Use on Water Resources

• Why is it important?

• How can we quantify impacts?

• What impacts does changing land use have on water 
resources?

• Where are similar impacts documented globally?

• How can we use understanding to develop sustainable 
water resources?



Sustainable Water Resources Management

• Integrate land and water resources management (Blue 
Revolution, Ian Calder)

• Decrease dependence on irrigated agriculture

• Drop sectoral divisions between irrigated and rainfed agriculture 
(Comprehensive Assessment of Water Management in 
Agriculture)
– Rainwater harvesting and supplemental irrigation in rainfed 

areas 
– Irrigation shift from semiarid to more humid settings

• Increase productivity of rainfed agriculture (more crop per drop, 
reduce evaporation, runoff, and drainage; decrease fallow 
periods)



Sustainable Water Resources Management
Southern High Plains

• Reduce irrigated agriculture

• Irrigated agriculture rainfed agriculture

• Rotate rainfed agriculture with irrigated agriculture 
when groundwater levels rise near the land surface

• Convert natural ecosystems to rainfed agriculture

• Deep ploughing of rainfed systems to further increase 
recharge
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