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1 INTRODUCTION  
 
Low permeability clays, sediments and rocks can 
form natural hydraulic barriers known as aquitards 
in sedimentary sequences. Aquitards often overlie 
aquifers that yield strategically important fresh water 
resources, and form important cap-rocks or seals be-
tween shallow aquifers and deeper strata that are 
targeted for depressurization during gas or mineral 
extraction (Timms et al. 2012).  

Measurement of the hydraulic properties of aqui-
tards materials can be difficult and time consuming. 
Aquitards are defined as strata that exhibit a hydrau-
lic conductivity K less than 10−8 m/s (Neuzil 1994).  
By comparison, low permeability clay barriers for 
hazardous waste landfills require K of <10-9 m/s (US 
EPA 1989). Groundwater studies generally assume 
that aquitards are saturated, although semi-saturated 
aquitards may also form an effective barrier for 
seepage and migration of contaminants.   

Centrifuge permeameter techniques have been 
developed over the past decade enabling flow and 
solute transport experiments of aquitard materials 
that would take significantly longer than conven-
tional 1 g column tests (e.g. constant or falling head 
tests) (Nimmo and Mello 1991, Conca and Wright 
1998; McCartney and Zornberg 2005; Timms and 
Hendry 2008). 

This paper reports a new centrifuge permeameter 
module designed for a Broadbent GT-18 geotech-
nical centrifuge (2.0 m diameter, 875 revolutions per 
minute, RPM). The new module was designed to test 
the K of porous samples by the National Centre for 
Groundwater Research and Training (NCGRT) at 
the University of New South Wales (UNSW). 

The NCGRT geocentrifuge system is moderately 
sized and relatively economic to operate, whilst suf-
ficiently large to minimize the G-level gradient 
across a core sample and enable real-time measure-
ment of various parameters during flight. The geo-
centrifuge tests reported herein focus on hydraulic 
characterization of intact drill core samples, in con-
trast to the more common application of geocentri-
fuges for physical modelling of earth systems, and 
geotechnics (Taylor, 1995). As such, hydraulic char-
acterization experiments in this geocentrifuge sys-
tem use identical material and fluid properties to in-
situ, or prototype systems.   

All the K values reported here are vertical matrix 
values for intact cores that are assumed to be satu-
rated. Hydraulic equilibrium occurs more rapidly in 
fine grained porous matrix at accelerated gravity 
compared with traditional methods (ASTM D7664). 
Matrix K values are an essential step in assessing 
bulk K at site and basin scale that may also be a 
function of heterogeneity, fractures and faults. 
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Rock cores from deep sedimentary basins were 
obtained using rotary mud drilling methods, using 
standard coring methods (65-80 mm diameter), with 
cores stored in open air trays. These cores were re-
saturated with synthesized porewater as described in 
Section 3.2. Rock cores were set in the permeameter 
liners using resin (black RS Components 199-1430 
resin and hardener mass ratio of 10.97:1). The resin 
was selected due to ultra-low permeability, fast cur-
ing rate and strong adherence to acrylic. Potting 
rings (ID 90 mm and length 30 mm, hard anodised 
aluminum alloy AL6061), custom designed by 
UNSW, were used to ensure that the resin set sample 
precisely matched the top and base of the core. Flat 
core surfaces and uniform cross-sectional area were 
assumed in K calculations. The UNSW potting rings 
were then fitted within the acrylic liner via double O 
ring seals. Both clayey-silt cores and rock cores set 
in resin were connected to the CP drainage plate via 
a 1mm thick A14 Geofabrics Bidim geofabric filter 
(110 micron, and permeability of 33 m/s) laid on top 
of a Whatman 5 Qualitative filter paper. 

3.2 Influent preparation and core re-saturation 

Influent was obtained from piezometers at a simi-
lar depth to the core samples, or was synthesized 
with an ionic strength, Ca/Na ratio and pH that ap-
proximated in-situ pore water chemistry. Natural in-
fluent sampled from piezometers was preferred to 
ensure realistic conditions, but was not possible for 
the shale samples because they were drilled from 
deep sedimentary basins. 

Saturation of cores for K testing was ensured by 
preservation of drill core and vacuum plate satura-
tion, and verified by monitoring weight changes dur-
ing testing, and moisture tests before and after test-
ing. A custom vacuum plate device was designed by 
UNSW to fit the CP liners containing the cores, 
drawing ponded influent from the top to the base of 
the cores. After 12-48 hours, or upon effluent flow 
from the base, the liners were then transferred direct-
ly to the CP module without disturbing the sample.  

3.3 Silica flour porous matrix 

A synthetic aquitard, or non-reactive low perme-
ability porous matrix was prepared in the column 
with silica flour. Two sizes of silica flour were used, 
75 µm diameter (95% passing 200 mesh) and 45 µm 
diameter (95% passing 350 mesh). The flour sup-
plied by Wallarah Minerals Australia, and comprised 
99.0% silica, 0.03% Fe2O3, with 0.2% loss on igni-
tion. In preliminary tests, the flour was packed in the 
column under wet conditions in 20 mm lifts, using a 
Delrin hand compactor with a diameter to tightly fit 
the interior column. The top of each lift was 
scrapped prior to packing additional matrix. An al-
ternative packing method, the silica flour was pre-

mixed with RO purified water (170 mL per 700g of 
flour) and the slurry poured into the CP liner. The 
flour was then compacted at 10G with a head of wa-
ter ponded.   

3.4 Deuterium tracer 

Deuterium (2H) has a natural abundance in water of 
approximately 15576 mg/L. In this work, the influ-
ent solution was raised to 200% of the natural abun-
dance of deuterium (31152 mg/L), by the addition of 
3.12 mL/L of 2H20 (99.8% concentration).  Influent 
and effluent 2H concentrations were then determined 
by measuring the 1H/2H ratio with a Los Gatos 
DLT100 isotope analyser. The breakthrough of the 
tracer was measured to within 0.1%. 

4 RESULTS AND DISCUSSION 

4.1 K testing of drill core in the CP module 

K testing results are shown in Figure 3 for a semi-
consolidated clayey-silt (100 mm diameter), from 
26.0 m depth at the Cattle Lane site (NSW, Austral-
ia). The target G-level of 80 was determined by in-
dependent consolidation testing to ensure that total 
stress applied did not change the void ratio of the 
core. The apparent K is only considered a reliable 
measurement when the influent rate equals the efflu-
ent rate. The apparent K at steady was 3×10-9 m/s, 
based on <1 hour measurement intervals, and 9×10-

10 m/s based on >12 hour measurements. The mois-
ture content of this core was 66% before and after 
CP testing.   
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Figure 3. Flow rate and apparent hydraulic conductivity as a 
function of G-level for clayey-silt sediment, Cattle Lane site, 
26.0 m depth, 100 mm diameter core.  
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K values as a function of depth below ground for all 
cores tested to date in the CP are summarized in 
Figure 4. The dataset includes semi-consolidated 
clayey silts from several undisclosed sites in Aus-
tralia’s Murray-Darling Basin and shale core from 
undisclosed sites in Eastern Australia. K values be-
tween 10-6 and <10-12 m/s have been measured for a 
variety of geological strata.  
Intact shale core were very low permeability as very 
high G-levels were required to force flow (up to 520 
G). K ranged from <10-12 to 4×10-10 m/s (n =12), 
compared with a resin only K of <10-12 m/s. Of these 
data, half the values were less than current detection 
limit of the instrumentation <10-12 m/s (n = 6). K of 
shales tested to date were significantly less than for 
semi-consolidated clayey sediments overlying high 
yielding gravel aquifers.  
.      
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Figure 4. Hydraulic conductivity as a function of depth for sili-
ca flour, sediment and rock core samples, at steady state flow 
in the new centrifuge permeameter.  

4.2 Verification of K by independent testing 

The K results for the Cattle Lane  core at 26.0 m 
depth were consistent with in-situ K measured by 
vertical pore pressure propagation (Timms and 
Acworth, 2005), but were significantly higher than 
blind constant head tests by an independent geotech-
nical laboratory. The in-situ K values were 1.6 to 4.0 
×10-9 m/s, compared to CP test results of 3×10-9 to 
9×10-10 m/s and constant head K values of 1.5×10-10 

and 4.9×10-11.m/s. The in-situ K value was measured 
over a vertical section from 15 to 35 m depth in the 
homogeneous clayey-silt deposit, while the constant 
head test was on similar core from 28.0 m depth.  
The constant head permeability methods (AS 1289 
6.7.3, 5.1.1) used distilled water influent and a 

standard total stress of 50 kPa, irrespective of the 
core depth.  

It was not possible to test very low permeability 
shale cores with standard techniques, as flow was 
not able to be induced. Therefore, the successful 
steady state flow testing of shales at accelerated 
gravity has provided important information about 
these aquitards that was otherwise not possible to 
obtain.    

4.3 Solute transport experiments 

Preliminary solute transport experiments in the CP 
module with non-reactive matrix (silica flour) and 
non-reactive influent tracer (deuterium isotope) were 
designed with a G-level to achieve a flow rate be-
tween 0.5 to 1 mL/minute, irrespective of the low K 
matrix (Figure 5). The target flow rate enabled a rea-
sonable definition of breakthrough curves with ef-
fluent sample volumes of 1-2 mL within several 
hours. The 45 micron silica was also tested in a 
benchtop column at a higher flow rate with a pres-
sure pump. The K of 10-8 m/s indicated that the same 
silica flour was significantly lower (Table 2) at G-
level 60 due to compression under the centrifuge ac-
celeration field.  

 
Table 2.  Solute transport through silica flour.  _________________________________________________ 
Setting          Experiment 2   Experiment 3                ____________  _____________  
            P1       P2       P1     P2 _________________________________________________ 
d-95 (micron)     45   45        75   75 
G-level*      60   60    30        30 
Flow* (mL/m)    0.4  0.6   1      0.8  
K×10-10(m/s)       2.7  3.2             12      9.3 
Breakthrough  
Core volume (mL)   258  221       195    162 
Effluent volume (mL)  29.5  42    56     46 
Effective porosity   0.1  0.2   0.3       0.3 
Velocity ×10-6 (m/s)***  8.9         6.7             7.2       5.7 
Time (hours)     6.8  7.3   8.5       9.9 ________________________________________________ 
*G-maximum was 80G and 120G for Experiment 2 and 3 re-
spectively. ** Steady state flow. *** Linear flow velocity is 
Darcy velocity divided by effective porosity. 
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Figure 5. Flow rate versus cumulative effluent volume for 45 
µm silica flour experiment 2(60g).   

 
Selected experimental parameters including ef-

fective porosity and pore volumes are reported in 



Table 2. One pore volume was defined C/C0 = 0.5, 
where C is effluent concentration and C0 is influent 
concentration. The effective porosity of the matrix 
during the CP experiment was calculated by dividing 
the pore volume by the total volume of the silica ma-
trix. The breakthrough curves in Figure 6 show that 
solute transport behavior was repeatable. Contami-
nant transport experiments are possible, provided 
that a stable porous medium and chemical equilibri-
um are maintained (Timms et al. 2009).  
.      
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Figure 6. Breakthrough curves of non-reactive deuterium tracer 
through synthetic non-reactive aquitard materials (45 µm and 
75 µm diameter silica flour at 60g and 30g respectively).   

5 SUMMARY AND FURTHER WORK 

The new CP module enables K testing of low per-
meability geological material for various applica-
tions, including measurements that would otherwise 
not be possible. Instrumentation developments that 
are currently in progress will enable real time moni-
toring of several parameters including moisture con-
tent. Current research includes solute transport mod-
eling to evaluate the effect different influent 
chemical compositions have on the hydraulic prop-
erties of different aquitard materials. 

6 REFERENCES 

ASTM. 2000. Standard test method for determining unsaturat-
ed and saturated hydraulic conductivity in porous media by 
steady-state centrifugation, American Society for Testing 
and Materials International, D 6527-00. 

ASTM, 2010. Standard test method for measurement of hy-
draulic conductivity of unsaturated soils. American Society 
for Testing and Materials International, D 7664-10. 

Broadbent, 2011. Operating Manual for Modular Geotechnical 
Centrifuge With GT2/0.65 Permeameter And GT6/0.75 
Beam Environments, Broadbent and Sons Ltd., Hudders-
field, UK. 

Conca, J.L. & Wright, J. 1998. The UFA method for rapid, di-
rect measurements of unsaturated transport properties in 
soil, sediment and rock, Australian Journal of Soil Re-
search 36:1-25. 

Dell’Avanzi, E., Zornberg, J.G., & Cabral, A.R. 2004. Suction 
profiles and scale factors for unsaturated flow under in-
creased gravitational field. Soils and Foundations 44(3):1-
11. 

McCartney, J. S. & Zornberg, J. G. 2005. “The centrifuge per-
meameter for unsaturated soils.” Experus 2005, A. Taranti-
no, E. Romero, and Y. J. Cui, eds., Balkema, Rotterdam. 

Neuzil C.E. 1994. How permeable are clays and shales? Water 
Resources Research, 30(2):145-150 

Nimmo, J.R., and K.A. Mello. 1991. Centrifugal techniques for 
measuring saturated hydraulic conductivity. Water Re-
sources Research 27(6): 1263–1269 

Parks, J., Stewart M. & McCartney J.S. 2012.Validation of a 
Centrifuge Permeameter for Investigation of Transient In-
filtration and Drainage Flow Processes in Unsaturated 
Soils. Geotechnical Testing Journal 35(1) GTJ103625. 

Taylor, R.N. 1995. Geotechnical Centrifuge Technology. Tay-
lor and Francis CRC. 

Timms, W.A.&Hendry, M.J. 2008. Long term reactive solute 
transport in an aquitard using a centrifuge model. Ground 
Water 46(4): 616-628.  

Timms, W, Hendry, J., Muise J, & Kerrich, R. 2009. Coupling 
Centrifuge Modeling and Laser Ablation ICP-MS to deter-
mine contaminant retardation in clays. Environmental Sci-
ence and Technology 43:1153–1159 

Timms, W. & Acworth, I. 2005. Propagation of porewater 
pressure change through thick clay sequences: an example 
from the Yarramanbah site, Liverpool Plains, New South 
Wales. Hydrogeology Journal 13: 858-870. 

Timms, W., Acworth, I, Hartland, A. & Laurence D. 2012 
Leading practices for assessing the integrity of confining 
strata: application to mining and coal seam gas extraction. 
In: McCullough, CD, Lund MA, Wyse L. International Wa-
ter and Mining Association Symposium Proceedings, Bun-
bury, Western Australia, September 29 to October 4, 2012. 
Page 139-148.  

US EPA, 1989. Requirement for hazardous waste landfill de-
sign, construction and closure. EPA/625/4-89/022. August.  

Zornberg, J.G. & McCartney, J.S. 2010. Centrifuge Perme-
ameter for Unsaturated Soils. I: Theoretical Basis and Ex-
perimental Developments. Journal of Geotechnical and 
Geoenvironmental Engineering 136(8): 1051-1063. 

7 ACKNOWLEDGEMENTS 

Funding from the Australian Research Council and the Nation-
al Water Commission through the National Centre for 
Groundwater Research and Training Program is acknowledged. 
We also thank N Baker and A Ainsworth of Broadbent and 
Sons and UNSW Water Research Laboratory. 


