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INTRODUCTION

• Surface water-groundwater interactions important 

for water allocations

– Anthropogenic needs

– Environmental needs

• Separate allocation of surface water and • Separate allocation of surface water and 

groundwater resources can produce problems in 

connected systems

– Reduced baseflow in streams

• Groundwater dependant ecosystems (aquatic, terrestrial, phreatic)

– Reduced surface water yield

• Challenge of linking SW-GW interactions into more 

typical hydrogeological investigations



INTRODUCTION

• Need to integrate SW-GW exchange and aquifer 

processes

• Hydrochemical approach used

– Major ions (Na+, Ca2+, Mg2+, K+, Cl-, HCO3
-, H4SiO4) and – Major ions (Na , Ca , Mg , K , Cl , HCO3 , H4SiO4) and 

– Water characteristic parameters (pH, dissolved oxygen, 

dissolved CO2, dissolved organic carbon) 

� used as natural tracers and to characterise 

chemical processes in the aquifer system

• Developed process-based conceptual model: 

hydrochemical and hydrogeological processes

DESCRIPTION OF THE SITE
Catchment area ~ 

800km2

Rainfall 

~1200mm/a

Investigation Transect

Rainfall 

700mm/a



Quaternary alluvial 
sediments:

- interspersed clay and 

Mt Kaputar Tertiary 
volcano (20 mya)

Permian:
- basaltic and 
rhyolitic lavas

- interspersed clay and 
sand/gravel sequences

Permian:
- sandstones
- siltstones
- claystones
- coal measures

HEAD DISTRIBUTION AND 

GROUNDWATER FLOW

Investigation transect



HEAD DISTRIBUTION AND 

GROUNDWATER FLOW

Defined:
Upper aquifer: <30m
Middle aquifer: 30-60m
Lower aquifer: >60m

RESULTS: PCO2 and DO
• Dissolved CO2: 

–Relatively constant in 

Upper aquifer

–Decreases in Middle 

and Lower aquifer

–Surface water trendAtmospheric PCO2 = 
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–Surface water trend

• Dissolved oxygen:
–Oxic to anoxic along 

transect

–Low DO in upstream 

surface water

� GW discharge to SW 

upstream of perennial 

pools
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RESULTS: HCO3
- with depth

• Relatively linear 

increase in HCO3
- with 

depth in Middle and 

Lower aquifers

• HCO - variable in 
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• HCO3
- variable in 

Upper aquifer

� Return flow of 

irrigation water sourced 

from aquifer
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RESULTS: Ca2+ and dissolved silica
• Ca acquired relatively 

linearly against HCO3
-

• Dissolved silica 

relatively high (17mg/L), 

constant, and 

supersaturated with 
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supersaturated with 

respect to some silica 

oxide phases

� Appears that 

substantial primary 

silicate weathering is 

occurring and releasing 

cations to solution0.0
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RESULTS: PHREEQC
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• PHREEQC Batch 

reaction model to test 

hypothesis of primary 

silicate weathering
– Upper aquifer water

– Dissolve 1mM Anorthite 0.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0

[HCO3
- ] (meq/L)

0.0

0.2

0.4

0.6

0.8

1.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0

[HCO3
-
 ] (meq/L)

[H
4
S

iO
4
] 

m
M

Modelled

Observed

– Dissolve 1mM Anorthite 

(an idealised pure-phase 

Ca-plagioclase feldspar)

– Look at general trends –

are they reasonable? 

� Appears plausible process

� Silica conserved in solid 

phase with Kaolinite 

precipitation indicated

RESULTS: STABILITY DIAGRAMS
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• Secondary weathering 

products important from 

process-perspective

• Stability diagrams very 

idealised, give indication only

• Montmorrillonite and 5
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• Montmorrillonite and 

kaolinite weathering products 

(vs PHREEQC model 

indicated kaolinite)

� Likely to be heterogeneous 

mixture of co-existing 

secondary products



GEOCHEMICAL PROCESSES

• Weathering of primary silicate reactions 

important eg the pure-phase Ca- and Na-

plagioclases were idealised cases considered:

7CaAl2Si2O8 + 12H+ + 8H4SiO4 → 6Ca0.165Al2.33Si3.67O10(OH)2 + 6Ca2+ + 16H2O

anorthite Ca-montmorillonite

2NaAlSi3O8 + 2H2CO3 + 9H2O → Al2Si2O5(OH)4 + 2Na+ + 2HCO3
- + 4H4SiO4

albite kaolinite

CONCEPTUAL MODEL

Irrigation return flows

Seasonal infiltration 

of SW to GW

to SW 
GW discharge 

‘Typical’ GW flowpath

“albite” + H+ → Na+ + kaolinite, montmorillonite + HCO3
- + H4SiO4

“anorthite” + H+ → Ca2+ + kaolinite, montmorillonite + HCO3
-



CONCLUSIONS

• Some key geochemical processes deduced

• Linked with previous investigations into SW-
GW interactions and strengthened 
knowledge of hydrogeological processesknowledge of hydrogeological processes

• Presented results as a conceptual model that 
integrates key hydrochemical and 
hydrogeological processes

• Useful for future aquifer system modelling
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Further information:

www.connectedwaters.unsw.edu.au
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