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Summary

It has long been recognised that the flow in the immediate vicinity
of a well is associated with steep hydraulic gradients, which may violate
Darcy's law. Experimental investigations have shown that departure
from the linear relationship starts at a range of Reynolds number between
1 and 10,, depending upon the distribution of grain size, particle shape,
and the degree of compaction of the aquifer material. (Todd, 1959).

Relatively few analyses have been made of the flow towards wells
in which the non-Darcy flow in the zone at close proximity to the well
boundary has been taken into account. It is only recently that the signif-
icance of this zone has been emphasised. In many cases, computed flow
rates based on Darcy's law are significantly greater than that actually
measured for fixed values of the well drawdown. The computation of
drawdowns near the well may also be grossly in error.

Two difficulties that confronted earlier workers were:-

(i) the two regime nature of the flow;

(ii) the non-linearity of the field equation, which prohibits solutions
by analytical techniques.

Furthermore the transition from one flow regime to the second
regime has not been clearly defined.

In this section of the report, the author has attempted to apply the
method of continuum mechanics to formulate the generalised problem of
three-dimensional well flow, and to apply the finite element technique to
solve the governing field equations for various flow cases that frequently
occur in practice. Methods of evaluating aquifer properties taking
account of the non-Darcy effects are being developed and means for pre-
dicting and allowing for these effects are being studied. Results of
these studies will be reported at a later date.
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1. Introduction

1.1 Literature Review

1.1.1 Well Hydraulics

The hydraulics of well flow based on Darcy's law have been extensively
studied. The simple linear relationship between the hydraulic gradient and
the macroscopic flow velotity gives rise to the linear governing equation,
which has been solved by analytical methods for a number of flow systems
where the aquifer is uniform and the boundary conditions are relatively
simple. A great deal of information on the solutions and methods of eval-
uating the aquifer properties has been published. An annotated biblio-
graphy has been presented by Huyakorn and Dudgeon (1972).

It has long been recognised that the flow in the immediate vicinity of
the well is associated with steep hydraulic gradients, which may violate
Darcy's law. The non-linear behaviour prevailing in this zone may have
a. considerable influence on both the discharge and specific capacity of the
well. Field observations often reveal that the computation of drawdown
in close proximity to well boundary is grossly in error.

The significance of the non-linear effect was first pointed out by
Jacob (1947) who proposed a hypothetical well-aquifer model incorporating
turbulent flow. He postulated that the flow through the aquifer follows the
linear velocity-gradient relation right up to a boundary surface generated
by what he termed ihe "effective well radius'. This radius is defined as
the distance from the axis of the well at which the computed drawdown based
on Darcy's law equals the actual drawdown just outside the screen. Inside
the "effective well radius'' the flow was assumed to be fully turbulent, and
the headloss was considered to be made up of losses due to turbulence in
the formation as well as into and inside the well.

Tc: account for the effects of these losses on the discharge, he |
suggested the following equation:

' 2
s, = BQ+ CQ (1-1)

where SW is the well drawdown, @ is the discharge, B and C are
empirical constants. ‘

Rorabaugh (1953) proposed a similar model but a slightly different
equation in which he expressed the drawdown in the well as
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8 = BQ + CQ (1-2)

where n is the exponential constant having a value between 1 and 2.

Whilst it has been found that the above equations fit many observed
~data, certain doubts still exist regarding their general applicability. The
empirical constants, B and C, have to be determined by the step draw-
down test. = Neither equation describes the drawdown distribution inside

the effective well radius nor do they determine under what conditions
turbulence and hence non- Darcy flow is likely to exist and be of practlcal
significance.

To determine whether or not non- Darcy flow is preséﬁt ox{_-m_a.y. be
expected to occur under a given condition, Mogg (1959) proposed the
‘Reynolds number as a criterion. The Reynolds number, IR, was.defined
as _ _ ' L

R = S0 (1-3)
where V is the macroscopic bulk velocity, 2 is the kinematic viscosity of
groundwater at the prevailing temperature, and d7g is the characteristic
grain diameter as obtained by sieve ana,lysm such that 7 0% by welght of
the sample is of coarser size.

From the results of permeability tests on unconsolidated samples
~of sands and gravels, Mogg found that the linear velocity-gradient re-
lationship holds provided IR is less than 10. At higher values of R the
head loss varies with the velocity raised to a power between 1 and 2.
Using these test data, the curve of the cone of depression was computed
for steady radial flow toward a well fully penetrating a uniform aquifer

material of similar characteristics to the samples tested. A semi-
log plot showed that the curve was non-linear in the turbulent zone near
the well boundary and the non-linearity became more pronounced as the
boundary was approached. Mogg also concluded that an important
factor appearing to reduce the effect of turbulence is the maximum-
development of the formation material adjacent to the well.

_ The study by Mogg merely provides a good starting point for later
workers. More accurate accounts of the non-linear effects are still
necessary for a proper choice of the well dimensions, screens and
gravel pack materials.

Engelund (1953) was the first to carry out a more general -
theoretical investigation into’ two-dimensional flow. He employed the
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following equation to describe both Darcy and non-Darcy flow through
uniform porous media.

— —

Yh = - BV V (1-4)
where vh is the hydraulic gradient vector, FX? is the velocity vector, and
F(|V]) is a scalar function of the absolute velocity | V]| and the medium
properties.

The function F(|V]) is expressed by

F({V))

1/Ksfor R < R (1-5a)

F(IV]) a +b|V[sfor R > R_ ' (1-5b)
where K is the coefficient of hydraulic conductivity of the medium, a and b
are termed ''linear and non-linear coefficients of hydraulic resistance',

and IB&}.S termed the "critical Reynolds number'".

By combining equation (1-4) with the continuity equation for two-
dimensional steady flow, Engelund obtained a generalised governing
equation which is valid for both flow regimes, namely Darcy and non-
Darcy. He transformed this equation into a linear form by employing the
technique of conformal fransformation, derived an equivalent variational
form of the equation, and established the concept of the rate of dissipation
of hydraulic energy for porous media flow.

Engelund was able to solve the linearised equation analytically for a
few limiting cases of flow at high Reynolds number. The major difficulties
he encountered were:-

(i) the two regime nature of the flow;

(ii) the complex form of the governing equation in the non- Darcy
zone, which prohibits mathematical solutions unless the
boundary conditions are made ideally simple.

To avoid these difficulties, the method of finite elements is employed

in this study. TUsing this procedure,complex boundary conditions and non-

uniform aquifers can be treated.

1.1.2 Application of the Finite Element Method

The application of the finite element technique to complex ground-
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water flow has become increasingly popular in recent years.

The development of generalised variational principles on which the
technique is usually based, the improvement of numerical methods for
solving large systems of algebraic equations, and the progressively o
greater capacity of modern digital computers all help to make possible
solutions of many previously intractable flow problems.

The versatility of the finite element method in handling different
kinds of flow boundaries and boundary conditions, aquifer anisotropy and
heterogeneity has been demonstrated by many workers for steady flow
complying with Darcy's law. (Zienkiewicz and Cheung, 1966; Taylor and
Brown, 1967; Finn, 1967). Neuman and Witherspoon (1968, 1969, 1970,
1971) are among the first workers to apply the method to transient flow
towards a well pumped at either constant discharge or constant drawdown.

"They extended the variational principles to cover both transient confined
and unconfined fiows, and solved a number of complex problems of flow
through multi-layered aquifers. The usefulness and validity of the
finite element approach was demonstrated by comparing the results with
the few known analytical solutions. The flow in the entire region of the
well-aquifer system was assumed to be in accordance with Darcy's law.
No attempt was made to examine the localised non-Darcy behaviour which
may exist if the well is heavily pumped or the well is packed with gravel
material. Trollope, Stark and Volker (1970) were among the first to
attempt to solve norn-Darcy well flow. These workers derived a non-
linear field equation describing steady two-dimensional flow through iso-
tropic aquifers with the hydraulic gradient and the flow velocity as the
dependent variables. The finite element analysis they used took no
account of the two regime nature of the flow. The same nor-linear
equation was applied throughout the entire flow region. “While this was
the case for the flow they simulated in the 1aboratory, it may not-be the
case generally observed in the field. '

In order to bring into focus the localised nature of the non- Darcy
zone surrounding the well, the non-linear field equation should be applied
only up to a point where the Reynolds number exceeds a certain critical
value as determired from permeability tests on the aquifer sample.

The general problem of transient two regime well flow still remains
to be solved. McCorquodale (1970) dealt with transient non- Darcy flow *
associated with rock-fill structure subjected to wave actior, but the field
equation he used differs from that describing the non-Darcy zone hear a
well. Problems of transient flow through aquifers towards wells are
-associated with elastic storage effects, which have to be taken into
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account in the continuity equation of flow, and in the case of unconfined
aquifers, the movement of the water table must also be considered.

1.2 Scope of the Present Study

The purpose of the present section is to present theoretical and

numerical methods for analysis of complex flow through aquifers towards

wells.

The theory and fundamental principles of well hydraulics based on
Darcy's law are reviewed and extended to describe non-Darcy flow which
may occur in the close vicinity of the well. Generalised field equations
and variational principles applicable for transient three-dimensional
flow are developed. Energy approach to the two-regime flow problem
is presented and an energy theorem is stated and proved. A powerful
numerical method so called ''finite element technique' is described and
formulated to solve confined flow cases. The flexibility and usefulness
of this method are demonstrated in the next séction. :

The method can be extended to the more complicated problems of
transient free surface flow.
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2. Basic Principles and Field Equations of Well Flow

2.1 Int'roduction

The flow through aquifers toward pumped wells is generally assoc-
iated with two flow reglmes, The first flow regime, referred to as 'Darcy
flow regime', is in the main portion of the aquifer where the flow complies
with Darcy's law. The second flow reglme ‘'occurs in the 1mmed1a.te vie-
inity of the well where Darcy's law may be 1nva11dated.

The hydraulic principles of well flow that .have-t-been_ outlined in the
~literature are based on the assumption that the flow'remains laminar and

obeys Darcy's law right to the face of the well boundary. ° In order to analyse |
- the general problem of two regime well flow, it is necessary to:extend these

principles and develop generahsed field equatlons w:hlch can descmbe both
Darcy and non-Darcy ﬂow. - o Coh ey

~ The hydraullc principles and field equations : developed herein are
generally applicable to transient, three dimensional, two regime well flow.
In this development, it is assumed that the two, flow regimes, namely
Darcy and non-Darcy are distinct, and that the Forchheimer non-linear
velocity-gradient relation may be used to describe non-Darcy flow. - The
concept of Reynolds' number of flow is introduced, and a critical Reynolds
“number is used to express the transition between the two flow regimes.
Tensor subscript notation is employed in the derivation of the field equations
to describe flow through anisotropic aquifers.

2.2 Darcy's Law

2.2.1 Differential Form

According to Darcy's law, the macroscopic flow velocity i8 proportional
to the hydraulic gradient taken in the flow direction. ‘The constant of prop-
ortionality is termed "coefficient of hydraulic conductivity", and is observed
to be dependent on the properties of groundwater as well as the character-
istics of the aquifer medium. Among the various factors influencing this
coefficient are grain size. distribution, packing and shape of granular part-
icles, temperature and chemical composition of groundwater.

The following generalisations are now introduced in order that Darcy's
law may be written in its differential form which is applicable to a general

problem of three dimensional flow through an1sotrop1c ‘and non-homogeneous
aqulfers.

B
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P (x,,%1,%*3) =(%()

Xy

pig. (2-1): Velocity and gradient at a point in cartesian coordinate system.

cartesian-coordinate axes (x1, X2 x2) with

A right handed system of
nding to a datum

axis X3 pointing vertically upward and plane x1-X2 correspo
plane is adopted as shown in Fig. (2-1).

x3) is defined as the sum

The hydraulic head h (xi,t) at point P(x1, X2
xg9. Thus

of the pressure head and the elevation of the point above plane X1~

the head may be expressed as
hxi,t) = ph T*3 (2-1)

ostatic pressure at the point, 8 is the specific weight

where p is the hydr
the elevation of the point above datum plane x1 - ¥2-

of water, and %3 is

three components of the velocity vector.

TLet vis V2s V3 be the

b, - -:Q-ll— be the three components of the hydr
3x  ox2 9%3 _

Z5 be the three unit vectors along X1

qulic gradi ent, and

x9 and X3 axes respectively.

nt vector, "?h may now be

T, €
-
V and the hydraulic gradie

The velocity vector,

expressed as _
V’ = vy -é’-j‘_ (2-2)
Fn - %?&i Z (2-3)

where the repeated subscripts denote gummation over the full range, from

1 to 3.

ee dimensional flow through ani sotropic aquifers, the
m of Darcy's law is given by

v -2 (2-4)

Thus for thr
general vector differential for



Ky = $yx T e

where 8ij denotes the Kronecker dejtg

Contracting Subscript J gives
o _ -.. . ah . . . < . .

In general Kij and K wil] be fundtions of coordinates, unless the aqu'ifer
is -homogenedus. '

2.2.2 Range of Validity of Darcy's 14y D |
~ The -linea.r_velocity— 8radient relation dictated by -Darcy's 15y may be
. plying . . .
motion to the microscopic flow through the pore Spacé of the aquifer medium,

and integrating these equations overp a4 macrog Copie region "(Sunada,__, .1965;
Stark and Volker, 1967), In the derivation, the microscopic flow ig

By analogy to flow through Pipes, the Reynolds Mumber may be em-

ployed as an index to Classify the flow into linear ang non-linear floy régimes.
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When adapted to flow through porous ‘media, the Reynolds number is given
by : -
vdp
R = 2-9

| T (2-9)
where QO is the fluid density, Vis the macroscopic bulk velocity, d is the
characteristic grain diameter, and M is the dynamic viscosity of the fluid.
The characteristic grain diameter suggested by Hazen (1893) is the diameter
of sand grain such that 10% by weight of the sample is of smaller size.

The above Reynolds number is not a completely satisfactory criterion
to define departure from Darcy's law or to determine the onset of non-Darcy
flow, mainly because it does not take sufficient account of the general shape
of separate grains and the packing of these grains. Research is still needed
to develop a better understanding of the flow transition. At present it is not
possible to make reliable predictions of the validity limit of the linear relation
for a given porous medium. Permeability tests on natural and artificial
sands have shown that departure from the linear Darcy law appears when IR
reaches a range between about 1 and 10, and that the non-linear behaviour
becomes evident at a value of IR many times less than that corresponding to
the onset of turbulence.

In view of the absence of a inore satisfactory criterion, a critical value
of the Reynolds number, Rcyp,has been used in the present study. The
critical Reynolds number is def ined as the limiting value above which the
velocity-gradient relation is non- linear.

2.3 Equations for Non-Darcy Flow in the Vicinity of Wells

The non-Darcy flow in the vicinity of a pumped well is described by
the non-linear Forchheimer relation, which for one- dimensional parallel
flow may be written as

i = aV+bv? | (2-10)

where i is the absolute hydraulic gradient, Vis the absolute macroscopic
velocity, a and b are the linear and non-linear coefficients of hydraulic re-
sistance respectively.

Equation (2-10) has been derived theoretically via microscopic approach
for both inertial laminar flow and turbulent flow (Stark and Volker, 1967).
The nonlinear term in the equation has been shown to be caused by the in-
creasing influence of the inertial forces in the case of inertial laminar flow,
and by inertial and turbulent effects in the case of turbulent flow.
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- Permeability tests on natural and artificial porous media have -confirmed -
- that the equation may be used to describe the flow over a wide range of
Reynolds number with the two coefficients of hydraulic resistance, a and

b, remaining approximately constant (Sunada, 1965 ; Stark and Volker, 1967).

In order to describe three dimensional non- Darcy flow through ani'sol—
tropic and non- homogeneous media, it is necessary to transform equation
(2-10) into the following vector differential equation '

-

vh = - (§+3lvl) vV - (2-11)

where & and b are the two hydraulic resistance tensors, the components
of which are ajj and bjj respectively. ' '- -

Equation (2-11) may also be written in the followin:g tensor subscript
form. - ' -

3h | N e
¥x; Tyt AV v o o (2r12)

where [V] is the length of the velocity vector
1

Vi = (viw? | . i (2-13)

The components of the effective hydraulic conductivity fensor_-, Eij', are now
defined in accordance with : o :

-1 L '
Eij = (ajj + bj ]VI ) (2-14)
where Ejj are functions of | v]. |

- For isotropic aquifers, equation (2- 12) reduces to

. . ®h

"h__bxi = - (a+b [V]) vy (2-15)
and Ejj becomes : |
E = (a+b|v])! |  (2-16)

where E is termed "the coefficient of effective hydraulic conductivity''.

2.4 Elastic Storage of Aquifers
' 2.4.1 Confined Aquifers

The concept of vdiume elasticity of confined aquifers has long been




B11;

established by laboratory and field observations. Phenomena such as
fluctuations of water levels in wells in response to barometric pressure
changes, earthquake effects and tidal fluctuations constitute good evidence
of the compressibility of these aquifers.

Transient flow under confined conditions is due to the volume of water
released from the aquifer storage because of water expansion and aquifer
compression in response to the decline in pressure head caused by pumping.
If it is agsumed that the stress-strain relationship of the aquifer complies
with Hooke's law, then an equation relating the decrease in hydraulic head
and the released volume of water may be derived as follows:-

a2
33
Lx. 3

. . au35
Xy,
Fig. (2.2): A differential volume of the aquifer.

Consider an elemental volume &¥% ina compressible aquifer medium
“‘as shown in Fig. (2. 2), it follows that

B = (8x, 8xp) ©%4
9A%z

"

‘where § A is the incremental horizontal area, and € z is the incremental
height.

If it is assumed that the water pressure acts throughout ¥, the com-
pressive stress of the skeleton acts over SA , the lateral deformations of
the volume are negligible, and the atmospheric pressure is constant, then
the following equation may be written provided that the arching action of .the

.overlying material is negligible. :

p +t 9%, = constant
where p is the water pressure and O34 is the vertical compressive stress.

Differentiating equation (2-17) leads to
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The stress-strain relationship for the compressible aquifer medium
is given by ' '

d Sz o dc.'*é;'3 : (2-18)
where is the vertical compressibility of the aquifer medium.
The volume of solid materia_l. S_'o‘s contained in ¥ is given by.

(1 - n) Az

i

n

where n .+ is the effective porosity of the aquifer.

- As the compressibility of the individual grains of the solid skeleton is small
compared to the change in porosity, n, the solid volume may be assumed
constant. Hence it follows that :

d( 9% ) = 0
A(8%) = $zd(l-m) + (1-n) d(§z )
A
dn = (1-n) 4.62) (2-19)
%z '

Equations (2-17) and (2-18) may be substituted into equation (2-19) to give

dn

-(1-n)« dv’as

dn  (1-n)dp (2-20)

The change in density of water and the differential pressure are
related by ’

dp = ﬁ‘po dp | | - | (2—.21)

where [5 and P, are the volume compressibility and a reference density
of water respectively.

The mass of water contained in B®¥ is

s M = Pn‘Sz‘bA
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On taking differentials

d( @ M) = %A(pn d (82) + p oz o\n+31ndp)
d—(—g% = pnd (82) 4 pdn & mdp | (2-22)
g'l.

Equations (2-18), (2-20) and (2-21) may be substituted into Equation
(2-22) to give

A (oM)
— = d + N o d -
e (p Rpe) dp
in which the density p may be approximated by po

Dividing by o gives

a (SM) = (o+ ﬁﬂ) dp (2-23)
P& _
The hydraulic head has been defined in accordance with
h = % + X3

where xg3 is kept constant
Differentiating gives
dp = §dh (2-24)

Substituting equation (2-24) into equation (2-23)

9_(%‘_;\) - ¥ (% +np)ah (2-252)
P

If the coefficient Sg is defined such that

Ss = ¥(at+np)

then substitution into equation (2-25a) leads to the required expression

d(eM) = ¢ dw (2-25b)
o S

The coefficient Sg of dimension L 1 has been termed the 'specific
storage' of the aquifer, and may be defined as the volume of water released
from storage in a unit volume of an aquifer due to compression of the aquifer
and expansion of water under a unit decline in the average head within the
unit volume.
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In the case of confined aquifers of constant-thickness it is common to
refer to the coefficient of storage, S, which is defined in accordance with

S = Sgm _ (2-286)
where m is the saturated thickness of the confined aquifer.

2. 4.2 Unconfined Aquifers

: The released volume of water from unconfined aquifers in response to
the reduction in head results mostly from the dewatering of the zone through
which the water table moves. The éffect of aquifer compression and expan-
sion of water in the saturated region below the water table, if it is apprec-
iable, is only nwoticed shortly after the start of pumping when the delayed
gravity drainage is almost absent. After this initial period, the gravity
drainage due to specific yield becomes appreciable and increases at a dim-
inishing rate with time of pumping. The manner in which specific yield
varies with time is not yet clearly understood. Additional field and lab-

: oratory research is needed to develop a better understanding., : Boulton
(1963) suggests that delay yield is an exponential functlon of time and is
proportional to the drawdown of the water table.

Following Boulton (1963), the general expression for the coefficient
of storage in an unconfined aquifer may be written as - -

S = €& +mSg . (2.—:27)
where € is the specific yield of the unconfined aquifer and m is the
saturated thickness. For all practical purposes S may be approximated
by .

S fe | (2-27)

. The expression for specific yield at time t from the start of pumping
is given by

t .
-0 & -7 (2.28)

€ = De Le )d'T’

where D is termed the delay yield index.

2.5 Derivation of Generalised Field Equations

2.5.1 The Continuity Equation of Flow

The continuity equation of flow through aquifers may be developed by
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applying the law of conservation of matter, according to which the net rate
of mass entering the closed boundary of an arbitrary volume situated in the
flow field is balanced by the rate of accumulation of mass within the volume.

Fig. (2—5'3): An arbitrary closed region in the flow field.

Consider an elemental volume 8% of an aquifer situated in the flow
field as shown in Fig. 2-3. Let 8A be the surface area of the closed
boundary of &% .

The net rate of mass entering JA is given by

- Ssa“" P Vi dA |
where nj are the components of the unit outward normal vector of the

differential area dA, P is the density of water, and v; are the components
of the velocity vector.

The rate of mass accumulated within §§ is

[ Moy
o 21V oF
Since mass is conserved, it follows that
L ) = oM av _
SSAh‘P Vi dA = 88% 3 Y (2-29)

The divergence theorem may now be applied to transform the surface
integral into a volume integral. On replacing the left-hand term of equation .
(2-29) by its equivalent volume integral, and rearranging the terms, the
following equation results

W, W - -3
S“[{o TR Jay =0 (2-30)

Since the choice of §¥ has been made arbitrarily, the integrand in
equation (2-30) may be shown to vanish identically. It follows that
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v = T M (2-31)
% o 8%
The rate of mass accumulated and the rate of change of hydraulic
head are related by
' - dM/3y _ S 2
P S¥ St
which may be substituted into equation (2-31) to give the required con-
tinuity equation.

A - -5, dh (2-32)
™ % o -

2.5.2 Differential Equations of Motion

The Darcy and the Forchheimer differential equations of flow have been

derived previously. The linear Darcy equations are applicable within the
region RD in the outer zone of the aquifer. The non-linear Forchheimer

equations are applicable within the region RN in the immediate vicinity of

the well.

To determine whether a point in the flow field belongs to RD or RN,
the critical Reynolds number is used as a criterion. A point in the flow
field belongs to RN if and only if its Reynolds number is greater than the
critical Reynolds number, otherwise it belongs to RD.

The equations of motion may now be rewritten as

vi = - Kjj
for R & R,

Ja

and > =~ (3i) + oy 1) vy

for R 9 Rgp

where Rer is the critical Reynolds number.

2.5.3 The Generalised Field Equations
(i) Darcy Flow

The Darcy differential equations and the continuity equation may be

combined together to give the following second order linear field equation, -

which is generally applicable to transient three- d1mensmnal Darcy flow in
anisotropic and non-homogeneous aquifers.

3 - o dh 2-33
!J bx!) = Ss vy | ( )
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For isotropic and homogeneous aquifers, the above field equation
reduces to

2 (xR = ¢ %
o S . (2-34)
in which the coefficient K is a constant. Equation (2-34) now becomes
2
h = 55 O (2-35a)
dX; By K ot
If the coefficient of diffusivity of aquifers, » , is defined as
K
YV = 5
S

equation (2-35a) may be written in the form

dh  _ 1 )
%] oK Yy x (2-35b)

Equation (2-35b) has been solved in closed forms for a number of cases
of axi-symmetric well flow. Severalmhetliods for evaluating the aquifer
properties based on the mathematical solutions are available in the literature
(Huyakorn and Dudgeon, 1972).

(ii) Non-Darcy Flow

The non-linear field equation describing non-Darcy flow in anisotropic
aquifers may be obtained by combining the Forchheimer differential equations
of motion with the continuity equation.

From equation (2-12), it follows that

-1
vi T - (aij + bij \V\) __g_;_'\ (2-36)
_ \
which may be substituted into equation (2-32) to result in
D [(ap+ ki)Y' '] =52 i

 The detailed analysis of equation (2-37) is beyond the scope of the -
present study. The present analysis assumes that the aquifer is isotropic.
Such an assumption leads to a simplified field equation involving only h
as a dependent variable.

- For isotropic aquifers, the Forchheimer differential equations
reduce to
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21

% -a+b Wl)w (2-38)

Contracting subscript i in equation (2-38) gives

h b\'x = (a+b \V\) Vi Vi (2-39)
DK O
The absolute hydraulic gradient is defined as
Y :
\\i’b l = ( LR (2-40a)
b\( K,
which may be rearranged to give
Bhoodh _ |2k |2 (2-40Db)
bx‘ h\ﬂ‘ oL
Now
2
vivi = |v| | (2-40c)

Substituting equations (2-40b) and (2-40c) into.equation (2-39) gives

\hd (a + bW |2

which may be rewritten as

%‘ﬂ = @b lvl \v| (2-41)
Solving for |V|
Wl =2« [V ol (2-42)
|- B TR |
From equation (2-41), it follows that
tvi !
1*) ~ 3+ oWl (2-43)

Combining equations (2—38) (2-42) and (2-43) leads to

Vi= L M‘\) [_' %,ag’z * \?’*‘/at\] (2-44)

d
EquatLon (2-44) may now be substituted into the continuity equation to
give the required field equation.

Thus

'Sb"x‘-{ 1\;*\{(‘3) + D] )( 2’\"/zpc ] 6, 3 (2-43)
IR
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The above field equation is used to describe non-Darcy flow in the
vicinity of pumped wells. '

9.6 Initial and Boundary Conditions

Initial and boundary conditions refer to conditions of a well-aquifer
system at a particular time before pumping starts, and conditions prevailing
on the boundaries of the system respectively. Solutions of the previously
derived field equations satisfying these conditions can be used to describe
a given flow system. On small scales of space and time, the actual
variations of boundary and initial conditions are generally irregular. How-
ever, if the process of averaging in time and space is introduced, the av-
eraged initial and boundary conditions become regular and may be-assigned
mathematical expressions.

(i) Initial Conditions

The initial distribution of hydraulic head throughout the aquifer region
is assumed to be a prescribed function of coordinates. If the function is
continuous, the correct solution of the problem should tend to this function
as the time approaches zero. 1, on the other hand, the initial distribution
is discontinuous at points or on surfaces, the discontinuities must disappear
after a very short time and the solution must converge to the initial dis-
tribution at all points where this distribution is continuous.

: The distribution of head of a well-aquifer system initially at rest
usually corresponds to the height of water table above the datum plane, and
the initial condition may be expressed as

h(x;, 0) = h%x) (2-46)

xj€ R
where ho(xi) is the prescribed head function, and Ris the closed region of
the flow system.

(ii) Boundaries and Boundary Conditions

The boundaries of a well-aquifer system and the prevailing conditions
that-are-of commono ccurrence are cldssified as foltbws:-

(a) Pervious Boundaries

Pervious boundaries of a flow system are defined as boundaries or
portions of the boundary across which there can be flux interchanges between
the flow system and its surroundings. ' : -
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Two common examples of boundaries of this kind are Screen sections

alorig the vertical axis of a well, and portions of the aquifer boundary in-
- tercepted by recharge sources.

The conditions prevailing on these boundaries are as follows;-

Type 1: Prescribed Flux or Prescribed Flow Rate

If the flux distribution on the boundary is known at any instant of time,
‘the resulting bourdary condition will be referred to'as'"prescribed flux _
condition". If, on the other hand, the total flow rate across:the boundary
is a known-_fun-ction_of time, the resulting boundary condition will be referred
to as "prescribed flow rate condition", Co

Both the prescribed flux condition and prescribed flow rate -cohd_ition :
will be referred to ag M Type 1 boundary condition', They may be expressed
mathematically in the following manner.

_ ous boundary where the flux dis-
tribution or the flow rate is prescribed.  If § denotes the prescribed in-
flow flux, then the prescribed flux condition may be written as

Let B 1p be the portion of the pervi

ving = -g (x5 1) (2-47)

e
(x;) €8
where vi are the componenis of the velocity vector Vt and n; are the com-
ponents of the outward fiormal vector 1 of the boundary surface.

Also if Q(t) denotes the préscribed fiow rate at time t, the prescribed
flow rate condition may be written as ' :

Q@ = Q) across Blp (2-48)
Two common examples of type 1 boundary conditiohs are the prescribed flux
condition on the leaky boundary of an aquifer and the prescribed flow rate
condition prevailing on the boundary of a weil operating at a known dis-

Type 2: Prescribed Head Distribution

A common example is where the aqu':ifer boundary is intercepted by a
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very large body of surface water. The water level at this location is uni-
form and unaffected by pumping. Another example is the condition of
constant hydraulic head on wetted screened sections in a well operating at
a constant water level.

The mathematical expression of this type of boundary condition is
given by

h = h(xj t) (2-49)
on sz
where h is the prescribed head function, and BaP denotes the portion of the
pervious boundary on which the head is prescribed.

(b) Impervious Boundaries

Across impervious boundaries of a flow system, no flux exchange be-
tween the system and its surroundings is possible. Accordingly, the vel-
ocity component normal to the boundary is zero.

Typical examples of boundaries of this kind  are rock beds over-
lying and underlying the aquifers, and cased sections of the well boundary.
The prevailing boundary condition may be expressed as -

Ve

;14 = 0 (2-50)

on B?
where B€ denotes the impervious boundary.

(c) Free Surfaces

A free surface may be defined as a stream surface along which the
pressure is uniform. In proble}ns of flow-towards water table wells in
which the effects of capillary fringe on flow in the saturated region may be
neglected, the water table may be taken as the upper bounding free surface
of ‘'the flow, and the pressure on it may be considered uniform and equal to
the atmospheric pressure. The position of the free surface at any instant of

 time during pumping is unknown and has to be located by trial and error

during the course of solution of the flow problem.
Two conditions have to be satisfied on the free surface. The first is

h{xij,t) = =x3 = 2(xq1,%x2,1) | ' (2-51)
onBF
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where z(x_,x,,t) is the vertical height of the free surface at (x15%9,t)
above the datiim plane, and BY denotes the free surface boundary.

_ The second condition is the requirement of continuity of flow across
the free surface ng ¢ I

B4

Fig. (2-4): A differential element of the free surface.

To derive this condition, consider a differential element of the free surface,
dBF as shown in Fig.(2-4).

Let z(x1,x2,t) denote the elevation at time t of a point (x1, x2) on daB¥
above the datum plane. At later time t+dt point (x1,x39,t) is moved to
(%15 %2, t+dt) due to a shift in the free surface. If the net average of vertical
infiltration into the free surface is I, and the specific yield capacity is €
then the volume of water contained in the elemental volume, d & = dBFql ,
may be expressed as
F oz

F I.
€dB d¢ or € dB — nqdt
ot 3

where n3 is the vertical component of the normal vector of dBF.

This quantity is balanced by the net volume of inflow during an in-
cremental time dt, given by

(vinj + In3) dBth

Hence F \z i
€ dB 3t B3 dt = (vjnj + Ing) dB dt

‘which may be rearranged to result in the required boundary condition.

ving = (I 6%,

31 (2-52)

on BF




BZSI

Since the choice of dBY has been made arbitrarily, equation (2-52) is
applicable on the entire free surface BF,

If the flow is steady, the right hand term of equation (2-52) vanishes
and the following condition results

vinj = 0 (2-53)
on BF

(d) Seepage Faces

Unconfined flow problems are complicated by the presence of free sur-
faces and the presence of exit flow boundaries directly connected to these
surfaces. These exit flow boundaries are referred to as ''seepage faces'’;
their length or extent is unknown, but on them the pressure is uniform and,
in most cases, may be taken to be atmospheric. Seepage takes place
across the faces resulting in the seepage flow, which may be a significant
proportion of the total flow.

The seepage face of a water-table well is the vertical drainage face
located directly below the water table and above the pumping water level.

The prevailing boundary condition may be written as

h(x;, 1) = x3 (2.54)
on BS

where B® denotes the seepage face surface.

(e) Aqﬁifer Interfaces

Frequently in practice, a well penetrates a number of aquifers
having uniform but different hydraulic-properties. The interface over
which the change in hydraulic properties takes place may be idealized as
a surface forming a common boundary between the two adjacent aquifers.
Each aquifer is treated as a closed subregion, and the flow in the sub-
region is connected to the flow in the adjacent subregion by the flux crossing
the common interface. If the head distribution in two such aquifers is
designated by hy and hy and the velocity components by v;; and vijg, then
the boundary conditions on the interface may be expressed as

on Bl (2-55a)

and )
on B

where B! denotes the interface boundary surface, and n; are the components
of a unit vector normal to the surface.
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3. Variational Principle for Two Regime Well Flow
3.1 Introduction

~ In the previous chapter the fundamental approach to the general
problem of two regime well flow was presented, in which the flow was
described by two field equations and the problem was reduced to that of
finding a function satisfying these equations as well as the initial and
boundary conditions.

~ An alternative approach is possible via variational methods. In
this approach an extremum principle valid over the entire flow region is
postulated. The required solution is the one extremising a certain
quantity £) , termed 'functional', subject to the same conditions of the
flow system. The functional is defined by suitable integration of the un-
known quantities over the region.

While the two approaches are mathematically equivalent in the
sense that an exact solution of one being the solution of the other, the
variational approach is particularly useful for the approximate computation
of the solution by the finite element method. Furthermore the governing
field equations may be obtained from the necessary conditions for extrem-
isation of the functional.

The variational principle for steady state Darcy flow through aquifers
was developed by Mauersberger (1965) and later extended by Neuman and
Witherspoon-(1970), (1971) to transient flow. The principle for non-Darcy
flow has not been fully developed. Ouly the case of steady state two-
dimensional flow was treated by Volker (1969) and McCorquodale (1969).

The purpose of this chapter is to present a generalised variational
principle applicable to transient two-regime well flow through confined
and unconfined aquifers. The energy theorem describing the flow is es-
tablished and directly related to the variational principle. Via this
theorem a physical meaning is assigned to the functional.

EE.
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3.2 Development of Variational Principle

3.2.1 Variational Forms of the Field Equations

!

R=R°YR"

¥ t+A% 0

1) agha

Fig. (3-1) 3-Dimensional space region and an open time domain.

Variational forms of the previously derived field equations may be
obtained by considering an equivalent variational problem and employing the
Euler-Lagrange equation from calculus of variations, (Wienstock, 1952).

Consider the general well-aquifer system shown in Fig. (3-1). As
indicated above, (x1,X9,Xg) represents a right-handed system of cartesian
coordinate axes, RD and RN are the Darcy and non-Darcy subregions of
flow respectively.

Let h (x;,t) be an admissible function with second space and first
time derivatives which are continuous everywhere in a given flow region R,
and let the time domain be subdivided into a number of finite time in-
crements.

Assuming that h(x;j, t) is known at a particular time t, the general
functional to ke extremised over the space region R and the time increment
At may be expressed as

trat '
[am] = | Jatk, 2 % w t)drat
TR + R ax]‘ 1

2L (3-1)

The extremum problem is now reduced to seeking the function h (x;, 1)
which holds the above functional stationary. A necessary condition is the
Euler-Lagrange equation, which may be written as

26 - 2 (aﬁ ) + _a__(a__@) = O (3-2)
oh oX; " p(ah) ot "2
’axl- é"%
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where the repeated subscripts represent summation over the full range,
from 1 to 3.

Equation (3-2) represents various classes of part1a1 differential
equatlon The previously derived field equations may be shown to belong
to one of these classes. Thus on equating the field equations to equation
(3-2), expressions for function G may be obtained.

(i) Non-Darcy Field Equation

The field equation describing non-Darcy flow through isotropic
aquifers is now rewritten as

g |

[o) a a 2h 3 h ) 32h i

D x4 E(_ 2b +\f(2b) + :(&‘ ) ('é -aXi) ] = Sg EYS (3-3)
e

The above equation is applmable everywhere in the non- Darcy sub-
region RN, On equating this equation to equation (3-2), the following
equations result:

0G _

2~ 0

2G _ ~a _g_" 2 ¢ oh
a2 ) (2‘0]/5 I:_—‘ ) (o)
___ag = hSg
o)

" S¢ b 2L (3-4)

The required functional [.Q (h) ] RN over subfeg‘ibn RN is now expre.ssible
as

7At 3/2
. 2b 'o-h
[(Am) . - o[- 2R 2o g2 280}
]RN /4N [ 5 1o { 1_1)
. |
+ Sgh 2= ] dRdt (3-5)




B27.
(ii) Darcy Flow

The field equation describing Darcy flow through anisoptropic
aquifers is rewritten as

2% (Klzl axj> 5s 1 (3-6)

Equation (3-6) is applicable everywhere in RP. Onm equating this equation
to equation (3-2), the following relations are obtained: :

2G

2 h B 0
xe _ 2h
2h Kij ox.
A=) j
1
28 - s
o+~ )

‘Integrating the above expressions leads to

G- ik, 2B 2B g 2B (3-7)

t +At
- 1. oh .Zﬂl _
g (h)]RD / /D [#Ky 2 2 +5 h =3¢ ] dRdt (3-8)
t R J
For isotropic aquifers, equation (3-8) reduces to
t +At
(2w ]p - / /D[ k28 b g p 20 grat  (3-9)

aX]_ axl t

(jii) Statement of the Variational Problem

Let R be the union of RN and RD. The functional [.Q (h) ] R over R

is expressible as
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[n(h)JR = [Qm)py o+ [n(h)]RD I (3-10)

where [(2 (h) ] RN and {(Q(h) ] _.D are the two pbrtions contributed
by RN and RD respectively. Theifr expressions are given in equations (3-5)
and (3-8) respectively.

The variational problem reduces to finding an admissible function thai_:

extremises ({2 (h) 1 and also sdisfies the existing initial and boundary
conditions of the flow system. The classification of flow boundaries
according to their physical nature has been presented previously.

3.2.2 Treatment of Initial and Boundary Conditions

(i) Initial Condition

At a particular time, taken as an initial time, the head distribution
throughout the space region of the flow system is known.  If, in the extrem-
isation of the function, the time integration is carried out between time 0
and At, the admissible function will a.utomatlcally satisfy the following
‘initial condition.

h(x,00 = h°(x) .
(x)¢ R; R = RUB

where h° (x;) is the initial head, Ris the closed region of the flow system,
R and B are the interior and boundary of R respectively.

(ii) Boundary Conditions

In extremising the functional, the requirements of the conditions on
the flow boundary must be met. These requirements correspond to extra
terms that have to be added to the previously derived functional.

The additional terms only exist on the boundary and vanish elsewhere
in the flow region.

(a) Prescribed Boundary Conditions

Except for the free surfa,ce, the -conditions prevailing on portlons of
the entire flow boundary fall into one of the following types.

Type 1: Prescribed Flux Condition.

Let B1 be the portion of B where the flux is prescribed. The
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' prescribed flux condition may be rewritten as

viny = - q
on B1

where q is #he prescribed inflow flux, vj and n; are components of the
velocity and/outward normal vectors.

The additional term on 'Bl that has to be added to the functional
[ 2 (n) ] R is given by '

t+ At

/ j'. h § dBdt
i B,

Type 2: Prescribed Head Condition

Let Bg be the portion of B where the head function is prescribed.
The condition prevailing on By may be rewritten as,

h (xi: t) = h
(%) € By

where h is the prescribed head function.

The existing term on By that has to be added to the functional

(Qm ] g is

t + At
- / / (h - h)vijn; dBdt
t B,

HoWeve-r, if the admissible function h (%;,t) is chosen to be equal to h
everywhere on By, the integrand of the above integral will vanish
identically and the integral may be neglected.

(b) Free Surfa'ce Conditions

The two conditions prevailing on the free surface of flow toward
water table wells have been derived earlier in this report. They may be
rewritten as follows:-

Let BF be the free surface portion of the entire flow boundary B.
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The first condition that must be satistied on BY is
h(x;, 1) = z(xX1,%9, 1)
where z is the elevation of the free surface above datum plane x; - Xg.

/

The second condition is

ving = (1 -€27) ng

where I is the vertical infiltration into the free surface, and ¢ is the
specific yield of the aquifer material.
The additional terms on 'BF due to these two conditions are given by

t+at

/ / (h-2) v dBat
£ BT

and Cteat

/ /F[Z(.I—Eaz)ns] dBdt | ’
t B

i'e-sp ectively.

3.3 Energy Appfoach to Well Flow Problems

3.3.1 Dissipation of Energy in the Flow Region

The movement of groundwater occurs through the 1nterconneoted
portlon of the existing porespace within the aquifer medium. While flow-
ing, the water particle loses some of its energy due to friction against the
walls of granular particles along the seepage path. The loss of hydraulic
energy per unit distance travelled is usually expressed in terms of the
hydraulic gradient.

When the macroscopic flow velocity lies within the range of Darcy
flow, it is observed to be linearly related to the hydraulic gradient.
Departure from the linear relationship starts at velocities greater than
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a critical value corresponding to the transition from linear regime to
non-linear regime. The non-linear relationship has been represented
by the Forchheimer velocity-gradient relation.

Vi

—

/

Vdi

-
Kol

O . ' A
Fig. (3-2) Velocity-gradient relationship for a hypothetical aquifer.

A velocity-gradient curve for a hypothetical isotropic aquifer is
shown in Fig. (3-2). As indicated above, the area of the shaded strip
under the curve represents an increment of the rate of dissipation of
hydraulic energy per unit weight of water. The total rate of energy
dissipated within the aquifer volume may be evaluated as follows:

Consider an arbitrary volume R of the aquifer situated in the field
of flow. Let a function §, termed 'dissipation function', be defined in
accordance with

9 = Jvai - (3-11)

6 represents the rate of dissipation of hydraulic energy per unit weight
of water. The tofal rate of energy dissipation within volume R of the
aquifer medium, X, is given by

% = ¥/éar - 3)([vaindr (3-12)
R R

where ¥ is the specific weight of water.

The integral in brackets may be integrated, if an expression relating
V/ and i is given.

3.3.2 Dissipation Function for 3- Dimensional Flow

A general expression of the dissipation function for three dimensional
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flow is _ e e | o
9= - f"i (ax1 T N T (3.'-I13). :

where the repeated subscripts represent summation over the .-full_r"ange,
from one to three.

(i) Darcy Flow

For Da.rcy flow through anisotropic aquifers, the dissipation functlon
becomes

. _ _oh (2hy
p = leJ 2%; ‘5 :
b = 1 i Bx _L’ax + .cc_mstant o o (3-14)

. 3
(i1) 'Non-Darcy Flow

The dissipation functzon for non- Da.rcy ﬂow obeylng the Forchhelmer
ve10c1ty gradient relatlon is given by

where the integration may not be readily carried out as |V| is also a function

of the hydraulic gradien‘t.

However, if the aqulfer is 1sotrop10, the mtegrated expres smn for
'ﬁ can be obtained in the- followmg manner.

Equation (3-15) reduces to -

- 1oh 4 oh) i
9 = /(a+b\vl X1 A=) (3-152)

Now from equations (2-42) and (2- 43)

@+b [v) ' o= -5 +1/(2b lahl S (3-16)

\%{1—\
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Also 9

|28) _ 2h 2h
31 aXl aXi

which when differentiated gives

lldlall = 2%, ‘ax ) (3-17)

Substituting equations (3-16) and (3-17) into equation (3-15) gives

m.=.](-§%+1/(;—b) s 2R ) a (K2R

b

On 1ntegrat1ng the following expression for ﬁ) is obtained
2 3/2
() + =S l + constant  (3-18)
{ 55 . } constan
b
3.3.3 Proposed Energy Theorem and Its Application

0= -

(i) General Introduction

o Energy theorems provide an extremely powerful tool for the theoretical
analysis of many physical problems. Via the energy approach, generalised
field equations describing the physical phenomenon may be developed.

The energy concept for groundwater flow complying with Darcy's law
was first introduced by Muskat (1937) who postulated that the actual dis-
tribution of hydraulic heads and flow velocities in a porous medium carry-
ing a fluid under viscous-flow conditions are such as to render the total o
loss of macroscopic energy of the fluid to:a'minimum, subject to the exist-
ing boundary conditions of the flow system.

Engelund (1953) further extended the concept to two dimensional
steady non-Darcy flow. He showed that the integral expression of the
rate of dissipation of hydraulic energy in the aquifer region is proportional
to the functional of the field equations which he developed for non-Darcy
through homogeneous and isotropic media.

In the development presented herein, the author attempts to establish
in a rigorous manner the energy theorem for general three-dimensional,
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transient, two regime flow through aquifers. It is shown that the field
equations governing the flow may be obtained by means of this theorem.

(ii) Development of Energy Theorem

Theorem 1: The movement of groundwater through saturated porous
aquifer media takes place in such a way that the total rate of dissipation
of energy is rendered to a minimum, sub;]ect to the ex 1st1ng 1n1t1a1 and
‘boundary conditions of the flow system

Proof:

Consider an arbitrary closed region Rin the aquifer medium. = Let
R be the interior volume of R, and dR be a differential volume of R.

The total rate of energy d1$81pated in the ﬂow consists of two _
portions, the first of which is. glven by

X, = ¥/ 0 dr | (3-19)
Y

The second portion is due to volume compressibility of the elastic
aquifer medium. It may be interpreted as the rate of dissipation of
elastic energy, and may be expressed as .

‘. - oh ; _
X = ¥fsgy 22 ar L (3-20)
where S, is the specific storage of the aquifer medium.

The quantity, (Sgh), may be defined as the volume of 'Water'-r_eleaséd :
from storage in a unit volum'e of an aquifer-u-nder a hydraulic head h,

Let the region R be subdivided into subregions RN and R , which are
the non-Darcy and Darcy subregions respectively.

Hence the total rate of energy d1s91pat10n is gwen by
. _,_ 2h
X = ] f ;7,5 dR + / SS 51 hdR

' oh
+ fD@ dR._+_../D SS, = h.dR]._. B .(3-21)
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where the expressions of Q are given by equations (3-13) and (3- 14)
respectively.

Substltutmg equations (3-13) and (3-14) into equation (3-24) gives

Lo, 3/2
. 9 _oh
ey, 2y 91 oh
g o= N [ o 5T 3b{(2b) e }+ Ss = b |dR
| 1. h _oh oh
+ /[ } Kij 5w Bx + Sg 2= h ] dr . (3-22)

rP

The functional, {) , is now defined in accordance with

The extremisation of () may be established by showing that the vanish-
ing of its first variation leads to an admissible function satisfying the pre-.
viously derived field equations. The condition of minimisation is then
guaranteed by showing that the second variation is a positive definite quantity.

In order to find the first variation, let h (x;,t) be an admissible function
which, together with its second space and first time derivatives, are con-
tinuous everywhere in region R. The function, h (xj,t), must satisfy the
initial and prescribed boundary conditions in order to be admissible.

The one-parameter family of ""comparison functions' is now defined
as :

H(xj,t) = hixpt)+ A (S h) | (3-24)

where ¢ h(xi) is an arbitrary function of space that vanishes on the portion
Bg of the flow boundary where h is prescribed, and A is the real parameter
of the family.

The first variation of (2 1is given by
5O - 4 (h+ AS h) (3-25)

Since the function, ¢ h, is chosen such that ._@__ ( § h) vanishes identically,
50 ‘may be written as

- oh e e
50 - R/D [ % T aXJ(c‘ih)+sS 2% 6h] dR
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_ 2
N / [_ a oh 9(éh) 3 [ra
- 2b 2x; O x 3 "7

oh | b h (éh)
21 ' b oxi 9xi

RN |
b 2
| 'c)h [ _ .
+ Sg __ °f  5h ] dR R  (3-26)

ot

The theorem _of integration by parts is now employed. It follows that

L oh 2 S o
R R J :

BD
D . o . D
where B is the _boundary of region, R".

Since &h is chosen to vanish on the boundary, equation (3-27) becomes
. _ (S h) / (Kij 5 )6n @& (5-29)

i -
RrP J % OXj D 0%j

Also in a similar manner, it follows that |
~.a oh » . fra 4, | oh 2h 2 N .
/[ 2 ( §h) +l/(2b) s (Jh).].dR

2b ox; ox 0Xi O0x4

2R
- 5h5%{(-%+/(§g_)

R 1

} dR
[ | <3-§9)

Substituting equations (3-28) and (3-29) into equation (3-26) gives -

S5O = _® (g.. 2h) h | _?:2._{_-1
,/D | 2 (s axi) + 8g 2= ] shdr+ ]N [ax- H .
"R J : , R 1
| ;--’(a)2 ‘ah '()hj | ’ah]; | ' |
H g+ BT } *8s pg JORAR (3-30)
S
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Now the two integrals must vanish independently, when §(2 is set to zero.
Hence it follows that

.. .a bh ,ah_ . )
o |
Q - a a ah | 2h | oh o
/N [axi {( 2b l/zb) + l I) ox; )} Sg 1 Jéh.dR— 0
. b ]ah
21 l

Since the choice of Jh has been made arbitrarily, the integrands of the above
two integrals vanish identically. Hence

. 2 k. 2B oh _ -
5 & 'ax'i) + Sg = =0 (3-31)
for (x3) € RD
~and .
'a a Ia)z "c?lh| oh oh
omem— - — 4+ —_— —_— - —_— ) + o—a = -
D%, K w ) ) o a;:hj EREAE 0 (3-32)
l’61 1
for (x;) € RN

Equations (3-31) and (3-32) are identical to the previously derived field
equations of Darcy and non-Darcy flow respectively.

Thus it is now established that the flow of groundwater through porous
aquifers takes place in such a way that the total rate of energy dissipation is
extremised.

To ensure that the extremised functional corresponds to a minimum, it
is sufficient to show that its second variation is a positive definite quantity.
The remaining part of the proof is not presented., However, it is pointed
out that the functional, {)(h),is a positive definite i:luantity as the function, h,
and its derivatives appear as squares and products.
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(iii_) Application of the Energy The_orem _

Previously, before the introduction of the energy concept and theorem 1,

.the functional [_Q (h)] was constructed by applying the Euler-Lagrange
equation to the field equations. It has just been established that via

energy approach a new functional .Q (h) may be constructed without having
to resort to the previously derived field equations, and that the minimisation
of O (h) leads to the same field equations. Furthermore, if function

h(xj, t) and its time derivative are assumed to be known at time t, and if
the time derivative is assumed to remain unvarled between t and t +At, the
two functionals may be related by -

| t+ ot | 3
(Qm] 5 = / £y (h) dt (3-33)
Thus a physical meaning can be assigned to [_Q (h)1.. It maybe

interpreted as the total hydraulic energy dissipated in the mterior of the
flow region between time t and t + At. Also the terms that have to be
added to functional [(2 (h) ] to account for additional boundary conditions
of the flow system may be 1nterpreted as energy exchanges between the
system and its surroundings,which take place across the flow boundary.

It is finally pointed out that the energy theorem just proved remains
invariant with respect to the choice of coordinate systems as the rate of
energy dissipation is a scalar quantity, which remains unchanged with the
change of coordinate systems.
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4. Finite Element Analysis of Axisymmetric Well Flow

4.1 Introduction

4.1.1 General Description of the Finite Element Method

In the previous section, variational forms of the field equations were
derived and an equivalent variational problem was stated. The problem
‘consists of finding an admissible function which renders a certain functional
stationary, subject to the existing initial and boundary conditions of the
flow system. The extremised functional was later proved to be a minimum.

An approximate solution of the above variational problem can be ob-
tained by a numerical technique known as the ''finite element'" method. In
this technique, the continuous region of the flow system is subdivided into
a finite number of closed subregions termed ''finite elements''. The
finite elements are assumed to be interconnected at a discrete number of
points situated on their boundaries. Associated with each element is a
chosen function that defines uniquely the hydraulic head distribution within
the element in terms of its nodal parameters. The functional over the
entire region of flow is assumed to be contributed by each element, and the
process of minimisation is accomplished by evaluating the elemental con-
tribution, adding all such contributions, differentiating the resulting
functional with respect to the nodal parameter and equating the differential
to zero.

The finite element analysis of axi- symmetric flow toward a single
well is developed in this section. The analysis considers two flow
regimes, namely the non-Darcy regime in the near well zone and the
Darcy regime in the remaining outer portion of the aquifer. Anisotropy
in aquifers is taken into account only in the Darcy zone. The analysis of
non-Darcy flow behaviour in anisotropic aquifers involves complex non-
linear velocity-gradient relations and field equations, the theoretical
basis and experimental verification of which have not been established.
Additional field and laboratory research is still required in order to
develop a better understanding of the anisotropic character of the two co-
efficients of hydraulic resistance in the Forchheimer constitutive relation,
namely coefficients 'a' and 'b'.

4.1. 2 Basic Definitions and Notation

(i) Definitions

~The following definitions have been employed in the formulation of the
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finite element method presented herein.

Definition (I)

The finite element method is a piecewise approximation process con-
sisting of subdivision of a continuous region into finite elements, evaluation
of elemental properties, assemblage of all elements, and solution of a
system of algebraic equatlons‘

Definition (II)

A finite eleme.nt is a closed subregion with the following properties;-

(i) Any admissible element when compatibilised with an adjacent
element must have portions of their boundaries mapped into a common
inter-element boundary.

(i1) The two elements are considered interconnected at a discrete
number of nodal points situated on the common boundary

(iii) Associated with each element is a piecewise function which is
expressible as a linear combination of a finite number of independent
shape functions; the number of terms in the combination being equal to
the number of nodes on the element boundary and the coefficient of the
term being the nodal value of the function.

(v) The elements may be classified into:-

"interior elements', which are elements having their closed
element boundaries contained within the interior of the entire
flow region, and

"exterior elements", which are elements having portions of
their boundaries as parts of the entire flow boundary.

(ii) Notation

A subscript notation is employed in the formulation. Both capital
letter and small letter subscripts are used. The capital letter subscript
refers to a particular node belonging to either an element or the entire
flow region. The range of the subscript is from one to the number of
nodes on the element boundary,. if reference is made to the element, or
~from one to the total number of nodes; if reference is made to the entire :
flow region. The small letter subscript, as previously indicated, refers
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to a particular component along the coordinate axis, and ranges from
one to three.

Unless it is indicated, repeated subscripts will be interpreted as
summation over the full range and the same subscript will not appear
more than twice in the same term of the equation.

4.2 Analysis of Flow in Confined Aquifers

4. 2.1 Formulation of Element Matrices

/”"’Jjg
I @

—_——

-
-

’ 0 o . ,

RUB
N D
= RURUB

|
x
»
Py
i

Fig. (4-1) Typical region of a confined aquifer and a finite element.

Consider a general problem of three-dimensional transient flow to-
wards a well penetrating a confined aquifer. A typical flow region Ris
shown in Fig. (4-1). As indicated, R is the union of RN, RP and B, which
are the non-Darcy subregion, the Darcy subregion and the flow boundary
respectively.

The functional over R may be expressed as the sum of the functionals
over RN, RD and B. Hence it follows that

[Qm]z = [QW] gy +[Q 0 ] pp +[Q W ]g (4-1)

The expressions for [{? (h) ]RN' and [Q (h) ]RD were derived in Section 2.
They may be rewritten as : '

3/2

[Q(h) = ] /N 2 _ail g b{(szJf‘;!}

. 5
+ Sgh 2% ] dr at (4-2)



B42,
and K

[Q @] gD

t+ At

1.  oh 2h oh ’ ._
./D[ 2 Kij 2%j  0%j N S'%l?_-@t_-Jdef‘  4-3)

1

t
Let the closed boundary, B, of the entire flow region be :subdivided into
B1, B2 which are the prescribed flux portion and the prescribed head
portion respectively. The functional over the closed boundary [Q (h) ]
is expresmble as the sum of the functionals over B1 and Ba. It follows

that | -
t+At ' ' t+At

(Qwly = [ [ hgedeat- [ [ h)vjn;dBdt (4-4)
t B1 t B2 |

In solving the flow problem by the finite element method, the flow
region R is subdivided into a network consisting of m interconnected
finite elements.

_ _ | e
Let the closed subregion of a typical element be denoted by R , and
the number of nodes situated on the element boundary be n€.

By employing definition (II), the head distribution within each
element is given by

hixj, 1) = Ny (xj) by (t) (4-5)

where Nj(xj) are piecewisely defined functions of coordinates (x1, X3, X3)
within the element, hj.(t) are the nodal values at time t of function h, and
the repeated subscripts, I, represent summation over the full range from
1 to n®. :

_ Thé -fﬁnct‘lonal.over the entire flow region, [IQ th) 1 -, is also ..ex—
pressible-as the sum of the fiinctionals over the finite elements, Q" ().,
Hence

@ mlg

1

m o e
S m | .- - (4-8)

e=1

The evaluation of elemental contributions is accomplished by eval-
uating firstly the contribution from the interior element and secondly the .
contribution from the exterior element. In the process of evaluation, it:-is

assumed that the element is sufflclently small so that R may be considered
to belong to either RN or RP.  The criterion for determmmg whether RE
belongs to RN or RD is as follows

it
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If the Reynolds number at the centroid of the element is greater
than the critical Reynolds number, the element will be considered to
belong to RN otherwise it belongs to RD.

(i) Interior Elements.

(a) Elements belonging to rN,

For interior elements belonging to RN, the functional over I_?.e is
given by :
t +At 2 3/2

€ ) = & qoh| 2, (& oh

Q2(h) = [ /e | 210‘5_1'1Jr sb{[zb + 1 u
t R b
+'Sg h 2% ] dRat (4-7)

Differentiating equation (4-7) with respect to hI gives

' t+ At

e
ol [ f [.2 2 (ohy,
ahl ¢ RE 2b  Ohy 1

1
b {2 2l L oojzhy,

% OBy o1
b
2 (oh ob oh -
Ss bogp (550 * Se 5 ahI] dRdt (4-8)

where it should be noted that subscript s is not a small letter subscript.
Sg merely denotes specific storage of the aquifer.

From equation (4-5)

oh . oM .  (4-
2.4 %5 b1 _ ' (4-9)
Contracting subscript i gives
2h 2h _ N7 2Ny
<= L= = —! pn =J nh 4-10
0x%j OXi 2% L 2% J ( )
Now 9
2h _ 2h 2h o . _
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- Differentiating equation (4-11) with respect to hI gives

‘2 |z . on 3 (on e
oy ‘31\ ox; o (3xi) | (4-12)
2
o

Also from e_ciuatién (4-9)

2 (2h) _  2NI | . g
ahI (axi)_ 2] . (4-13)

Substituting equations (4-9) and (4-13) into equation(4-12) results in

0hy | x4 hJ (<] (4-14)
|22
01
Since Nj are functions which do not vary with time, it follows that
N1
= h., —— = -
ah ) A 0 (4-15)
and
oh  oh - ol -
t ohp 219 Ny N (4_16)
Substituting equations (4-14) and (4-16) into equation (4-8) gives
e ttat 1
280,/ /[ ) c )L 22
G, hI R 2b l oh | oxy X1
.t R b o1 !
t+ At _
hy dRdt + J /s, 27 N;N_ dRdt (4-17)
/ : t RE ot I

-Introducmg the followmg equatlons

selge @)z e

1




e . f Ny _oNj ]
I A 2% 2% dR (4-18b)
RE
e
DJI = f Sg Ny Ny dR (4-18c)
Re
Substituting these equations into equation (4-17) gives
o t+at t+ At " _
aQ e e 2h
_= = C h_dt + D — dt 4-19
0 hy tf J1d t/ Ji ot @19
where J and I range from 1 to the number of nodes on the element boundary,
€
n .

(b) Elements Belonging to RD

_ -€
For elements belonging to RD, the functional over R is given by

t+At 1 2h 2h 2h _
A %) - / KRS 2= + Sg h —5 | dRat  (4-20)

t R

. Differentiating equation (4-20) with respect to hI gives

. tat
o2 _ . .. o2h o (2h _ 2 2h
ahl - / / [Kl-] Zij 0 hy ('axi )+ SS h 3’h1 ( at)
t R |
oh  h
+ 8, 2= é_ll}]de't . (4-21)

Substituting equations (4-13), (4-15) and (4-16) into equation (4-21)gives

t+At
e .
o 2Ny N1 2h )
3h; / ./ [K]‘_j X hj >x * Ss = NN, } dRdt (4-22)
t R®
M /e - / o aNJ BN )
Introducing CJI Re K1J EY X3 -—'-Ja X dR (4-23)

Substituting equations (4-18c) and (4-23) into equation (4-22) gives
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t+at t+At

0 by - J1 ot

(ii) Exterior Elements

In evaluating the functional contributed by the exterior element,
allowance must be made for the additional boundary conditions on the
element boundary. Accordingly, extra terms must be added to the
functional already derived for the interior element. These terms only
exist on the exterior boundary and vanish elsewhere. The additional
boundary conditions of confiined flow are prescribed flux and prescribed
head conditions. They may be dealt with in the following manner:—

Let BS and B © be the exterior portions of the element boundary
where the flux and “the head function are prescribed respectively. The .

additional term existing on B1 is given by
trat '
f f hq dBdt
e
t B1

and the additional existing on B; is

t+At )
- f / (h - h) v; n; dBdt
: e
t By
The resulting functional over R may now be written as
o trat - 2 3/2
] ce " BT TR AR S LTS
[@lge — f fe[ o 2 i(es) 31}
| 't R B b -
+ SS h——at dRdt
t+at

+ 'hq dBdt
[, e
t B1

e 7 : o " | :
0f) = j Ce h_dt + J’De -—a—-l-’—l'] dt - (4-24)
J JI .
t
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t+ At ~
- j f (h - h) v; n; dBdt (4- 25)

By

Since the admissible function h is chosen to automatically satisfy the pre-
scribed head condition on the entire flow boundary, the extra term con-
tributed by boundary portion Bg may be dropped from equation (4-25a).
Hence equation (4-25a) becomes

t+aAt 2 3/2
e _ 2 a 2h
o7 m]ze _/ _/ - 5% ?:1 to3P {z) +]a__1"|}
b
t+At o
+ Sgh — det+ f / hg dBdt (4-25b)

Thus differentiating equation (4-25b) with respect to hI gives

t+ At t+at t +at
20° f e €  2n
S cJI hJ dt + / DJI -a—- dt + fEI‘ dt (4-26)

I
t t
e j - -
where FI = e a NI dB (4-27)
. ]31 :

Similarly for elements belonging to RD the expression for the functional
may be written as

t+at

) ~ 1 oh 2h 2h
[Qm]ge = //E[QKIJ o o oS " ot ] am at
R
t+At
fe hq dB dt (4-28)
t B

Differentiating with respect to hI gives
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t+at - t+ At

e t+At '
Cof f hodt + DI W dt+jF a (4- 29)

(iii) Element Matrices

" The above formulation leads to various element matrices, which have
been expressed in subscript notation. The expressions are given in
Equations (4-18b), (4-18c), (4-23) and (4 27). They can be converted into
compact matrix forms as follows - '

Let [C ] , [C 1, [D g an d [F ] denote the element matrices

having matrix elements C e , D€ and E. respectively. By employ-

ing the matrix notation, the following equations may be written

[C®y = /eA rs1t[s] ar - | (4-30)
R

[ - _/eiS]T[Kl[S]dR (4-31)
R L

% - J sg [IN1T[N] ar (4-32)
RS

[F°] = / i )T am  (4-33)

. |

By

where A is a non-linear coefficient given by

A=[-2 +{(—Pf-—)2 +—?—’J—1}E] L . ' (4-342)
173 2 ot | Y |
21
in which _ 2N} N | L
R - s

LS ]T is the transpose of matrix [ S], which is given by
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. T aNl _ - - - - - - __QN._I]-e
[(s]” = %1 2% (4-35)
N1 | . 2 Nn€
%2 (2
N1 . . - - - - - - 2Nn®
X3 JX3 j

[K]is the hydraulic conductivity matrix, which may be written as

K,; Kz K3l

K = 4-36
[x] Koy Kog Kzsll (4-36)
Kg; K3z  Ks3j
[N]is the shape function matrix, which may be written as
[N] = [N1 ....... veee  eeeees Nne] (4-37)

In a similar manner the matrix equations relating the differentials of
functional, (O € and the nodal values of function h may be written. The
matrix equation for exterior elements in the non- Darcy subregion is ob-
tained from equation (4- 26). It is given by

t +at t+At e t4+AL

e

t | t t
' e -
where 202 ;
| 2hy 1 1}1 1
?)Qe oo e : '
e ,
202 hne

L’@h ne



The matrix equation for an interior element in the non- Darcy sub-
region is obtained by dropping the lagt integral term on the right hand side
of equation (4-38). Hence it follows that

e t+at t 44t

e
28 v &yr, € F€ [ Dh )
e / [C®1nC) at + D% [—-—-—a._t] dt (4- 39)
£ t

The matrix equations for "ex.-ter_ior.'.and-iﬂténic’)r:.-'_éiwements in the Darcy sub-
region are obtained from equations (4-38) and (4- 39) espectively by merely
replacing matrix (C®) in these equations by matrix ( C®).

4.2.2 Element Matrices for Triangular Ring Elements

The formulation of the element matrix just presented is a generalised
procedure that is applicable for three-dimensional well flow. Many prob-
lems of flow toward wells encountered in practice are usually axi-symmetric
flow problems. For the problems of thig kind, the formulation of the

element matrix may be simplified by employing the two- dimensional cylindrical

coordinate system, namely (r,Z). The entire flow region may be subdivided

about the vertical z-axis. A typical triangular ring element is shown in
Fig. (4-2). Z4 ' '

- Fig. (4-2): A typical triangular ring element.
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If the hydraulic head distribution at point (r, z) in the element is
represented by a linear function of r and z in terms of nodal values, then
it can be shown (Zienkiewicz and Cheung, 1967) that the shape functions
may be expressed as:-

NI = aI+bIr + ez (4-40)
where as bl’ c, are given by

a, = (r223 - r322)/2&. (4-412a)

b, = _2_2_2"3?_% ' (4-41b)

¢; = —3°72 (4-41c)

24

The remaining coefficients are obtained by cyclic permutation of subscripts,
and A is the area of triangle 1-2-3, which is given by
= !
| o
A = Pl ry Zg (4-414d)

i 1 I‘3 2‘,3 I
Now from equation (4-40), it follows that

ONp |
2 by
._-a.:.I.iI ! = Q
Dz I

Hence matrix [-S]T- may be written as

b b b
(st - ! ! 2 ] (4-42a)
! €2 €3
In a two dimensional coordinate system the hydraulic conductivity
matrix is ‘
i
(K] Kpy Kyp , (4-42b)

The shape function matrix for triangular element is

[N] = [ Ny,Ng,N3 ] (4-42¢)
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in which the expressions for Nj, Ny and "Ns ‘are gi_{reh by equation (4-40).

Fanir , o . ) ) Y . .
‘The expressions for element matrices [C®)and [ C®] can be ob-
tained by direct integration and noting that dR® has to be replaced by

dR® = 27 rdrdz (4-424)

The array elements of matrices [Ce] are now expressible as

ON1 N7y
c® . = f A ==L Z5 1 gR
R
‘which may be approximated by:-
210 1
C?J = m’r" A (bI bJ + eII @._‘J) (4-43)

where r is the centroidal radius of the triangular plane section, and A is
the non-linear coefficient given by equations (4-34a) and (4-34b).

Also the array elements of .[ Ce] are given by

e _ f N1 _ONy
¢ de (%55 5, ax; ] ar

Substituting for various terms on the right hand side and expanding, the above
equation becomes :

e _ 2fr :
Cu = IA B PPyt K b ey tK bR ee) (4-44)

in Whlch repeated subscripts r and z do not 1mply the usual summation con-
vention.

The integration for the matrix elements of matrices [Dland [F°] re-
quires more labour. The two matrices have been evaluated by Parekh(1967),
and are rewritten as-

F1/2 1/4 1/4

De - .,?_77;_1“_35 %1/4 1/2 . 1/4  (4-45)
[1/4  1/4 1/2 |
F1/2

o -

'F = 2TrqlL 1720 (4-46)
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in which it is assumed in equation (4-46) that side 1-2 of triangle 1-2- 3
corresponds to the exterior boundary portion where the flux is prescribed,

and the length of side 1-2 of the iriangle is denoted by L.

4,2.3 Element Mafriées for Isoparametric Ring Elements

(i) One-dimension Elements

Problems of one-dimensional flow toward a pumped well fully pen-
etrating an isotropic aquifer is simplified" by the use of non-dimensional
isoparametric elements. ' '

Z
Z &
A
b ]
[ : PR
b g — v ol
[
11
b’._! [ — l_+r OL..,__. I POS—— e - P“—r-
(a) (b)
?7{
oy E S
SUPRR—— r

Fig. (4-3)!Idealised one-dimensional region and one- dimensional .
isoparametric elements.

Consider a typical well-aquifer system shown in Fig. (4- 3a). Since
the velocity of flow is in the radial direction, it is sufficient to find the
hydraulic head distribution along any radial line. Accordingly, the two-
dimensional region in r-z plane shown in Fig. (4-3a) may be reduced to a
radial line shown in Fig. (4-3b). The line is subdivided into a network of
line elements. A typical element is shown in Fig. (4-3c). The planar

ring section is readily generated by revolving the line element above the
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Z-axis.
© Let € bea local coordinate assocmted With. each of the 11ne elements
The coordinate is so determined as to give € = 0 at node 3, € = 1 at node
2, and ¥ = - 1 atnode 1. The relatlonshlp between the radial coordmate
and € - coordinate is given by -
r = o£+o(§+o<§2 o (g
The derivation of the shape functlons for a famlly of 1soparametr1c:

elements has been presented by Ergatoudis, et al (1968) ~ The shape
functions for the above line element are given by -

2 2 2 |
[N, Np, NoJ = [-0.5 (§-€), -0.5(8+€), (1- g)] - (4-52)
The differentials dr and d§ are related by
_ dr
dr = ae d¥€
from which it follows that
_ (4N1 _
dr = (g% 7p) d¥ = Jds (4-53)

- where the repeated subscripts represent summation over the full range
and J is the Jacobian transformation matrix.

The expression for J is

J = 0.5(-1+2%)r; + 0.5(14+2€) ry + (-2€)r3 (4-54)
Also '
dNy _ ANy dg 1 dNg
dr d¢ dr J - d%
Hence the slope matrix, [S] for the 3-node line element becomes
. dN
| [S] - dr
- [s] = —-}— (0.5 (-1+2%), 0.5 (1+29, -2¢] (4-55)

I\Tow_ from equation (4-30) the elem ent 'matrilx [c®lis given by

[c€] - _é Als]'[s] ar  (4-56)

— -

[~ s e
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‘where dR = 27 rdr
‘Equation (4-56) reduces to

[ce]= zﬂf A[S]T[S] NIrIJd§ _ (4-57)
-1

where the definite integral may be evaluated numerically by employing
the gaussian quadrature formulae. Examples of numerical integration
by the gaussian formulae have been cited by Zienkiewicz (1967). On
applying the 3 point quadrature formula to equation (4-57) and multiplying,
the following expression results:-

e !
) =27TZ T(?g-N(?)rW(é X
- 2 2 2]
0.25(-1+ zsfi) 0.25(4‘5‘i - 1) =0.5(1-2 E’i)
2
0.25(4% -1)  0.25(1 +z‘§i)2 o.5(1-4=§iz)  (4-58)
.2 2 ' 2
- .5(1-2% ) .5(1 - 4%) (1 - 2%)
| i : 1 1 -

where A(€.), N.(€ ), and J(‘? 1) are functlons of the S -coordinate ev-
aluated at %he gaussian points, and W(¥, ) are the values of the welghtlng‘
coefficient at the gaussian points.

_ Similar expressions for matrices [Ce] and [De] can be obtained

1
e - 2?YﬁK][S]T[S] Nyr Jd§ (4-59)
[D®] = 2 ?rf S [N]T[N] N, rle‘é' . (4-60)

(ii) Quadrilateral Elements

The accuracy of the finite element solution of the two-dimensional
axi-symmetric well flow may he improved by the use of quadrilateral
‘elements. This type of element provides higher forms of approximation
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to the hydraﬁhc head function. Their use allows an appremable reductlon
- in the total number of hodés ih-the flow region for a given degree of accuracy.
A typical-4-node element is shown in Fig. (4-4). : - '

-

o= e ————r
Fig.. (4—4): A 4-node quedr.ilateral element.

_ A quadrﬂateral ring can be generated by revolvmg this element about
the z-axis.

Let a system of local coordmates (¢, 7) be assoma.ted with each of
the elements. These coordinates are so determined as to give n=-1
on side 1-2, J] = + 1 on side 4-3, ?—Ion51de23 and € = -1 on side
1-4. The relatwnshlps between the r-z coordlnates and %- ¥ coordinates
are given by :

]
1

"NI (¥.,7%) rro - - (4-61a)

1

“and z N($,7)z  (4-61b)
where I ranges from 1 to 4, .and N are the shape functions.

The expressions for NI have been developed by Zienkiewicz (1967)
They are written as .

L L ©(4-62)
Ny = (1+‘§»)(1 +77), N4 = 7 1-%)0 ) B

The differential operators with respect to r and z and that with respect to




§ and % are related by

B
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g o
or -1 12%¢
= ) (4-63)
2_ | 2 _ '
0z La}?
where J is the Jacobian matrix, which is given by
2r 2Dz |
e
(7] - s 0% (4-64)
| ©or 0z
Iv'-'._' *( . a‘? |
[, e, @, -( VOIEES
J ) T L_(l '§),“‘(1+?), (1 +?)’(1 - ?) . 1"2 Zz
Tz %3
|Ts %
Also drR = 2T r drdz
and drdz = {Jl d¥ dn (4-65)
where | Jlis the determinant of the Jacobian matrix.
The slope matrix, [S], is expressible as
5] - (17! | 2Ny 2Np N3 2Ng
| 7€ * P€’ 0¢ ° 0% (4-66)
aN; Ny _@N3 _2Ng
o7 * on ' o7 o7 |
. r.€ ‘el e] .
The element matrices [c’], [c®l, [D are given by
1 1 .
c® = 27 / / A [s]7[S) N r, (J| 4% dp (4-67a)

-1 -1
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where the numerical integration is accomplished by using the gaussian quad=
rature formula.

4,.2,4 Assemblage of Elements

In the assembling process, all elements are assembled through the
specification of the reduced compatability condition, which requires that.
the nodal values of the function be the same at coincident nodes of adjacent
elements and also equal to the prescribed value on the boundary portion
where the function is prescribed.

Thus on assembling, the functional for the entire flow region becomes

e
lQm)ly - Zn(hl) (4- 68)

where the summation is taken over the elements adjacent to the I-th nodal

point, and subscript I ranges from one to the total number of nodes in the
entire flow region. :

The minimisation of [ (hI) ]f{ requires that
. - = ol = - '
olnmpl g = > & 0 (4-69)
oh; . I

forI =1... ....... n

where n is the total number of nodes in the flow region.

20°

The expressions for > hI

have been obtained for both elements in

the non-Darcy subregion and elements in the Darcy subregion. The general
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expression is now rewritten as

t+ At t+At t+At
20 ° / e / e 2hy 4 ] £
h = CJI hJ dt + DJI -——‘],at t + | dt (4-70)
I t t £

: /
where for an element in the Darcy subregion, C?I is replaced by C;I
Substituting the above equation into equation (4-69) gives
t+ At AL At

S e e hj < e . _
Zg, / Cf hydt+y f DS, —Jat+ L/ FCdt = 0 (4-71)
t ° ¢ 1

The following gross matrices are now introduced.

11

c. = > c® (4-71a)

J1 ooy O a
T e -

Dy = ZDJI (4-71b)
st ._

F. = ZFI (4-71¢)
e=1

Thus equation (4-71) may be rewritten as

t+ At t +At t+ At
—_ d = -

where J and I now range from one to the total number of nodes in the entire

flow region.

Equation (4-72) is expressed in the integral form. In order to carry
out the time integration, it is assumed that all nodal values of h_and F_ are
known at earlier time t, and that the nodal values vary linearly over time
increment At which is made sufficiently small .,
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Hence equation (4-72) may now be integrated to result in

t+At

that 4 thAL At o
f Cpp bydi+ D (07 - ny @Y e F ) S -0 (13

where the superscrlpts denote the time at which the nodal values are
evaluated. -

The remaining integral term in equation (4-73) involves both C__and
h_, which vary with time. This is because C I is associated with tge non-
linear coefficient, A, which has been given in‘equations (4-34a) and (4-34b)
in. - terms of the nodal values of the function. To avoid further complication,
the above integral is approximated by '

t+At t+At

" t+At t ' '
/ Cyp Bydt= (Cpp+ Cpp) (g *hy) At _ (4'74).

t 2 2

Substituting this into equation (4-73) gives
t+at t t+at t t+4at t t+at t

x_\.t | t o -
(CJI+ CJI) ( _hJ + h ) + DJI (hJ_ - hJ) + (FI + FI) 5 - 0 (4-175)
which may be rearranged to give
t tHAt At ot t+At Cp ontlAtgt, At
gy by D5 (Cp+ Cpp )+ Dyl = Dyhy - GEEFF ) 4-76)
o —
t 1 +at
h
J "y
|
Tt trAt  t+At

2
Fig (4-5): Nodal values and their variation over A t.

b gt <
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Now let t + -éi;- denote the mid-time of t and t +At. It follows that
P Ath 1 mt + n t+A1:/2) (4-T172)
J 2y J. .
t+ At/ 1 CteAt ¢
FI = 3 (FI + FI) (4-77b)
tHatly t t+At
and -~ = = C = (C.+ C_. )2 (4-77c)

JI JI JI

On -subs_titutin-g these into equation (4 - 76), the following equation is obtained

_ t+At t+At " t+at
(At ¢ T 5 yn 2 S p_n -4y (4-78)
2 Jga g’y JI 77 2 1

Also from equation (4-77a), it follows that

t+At t+ At

. 2 - ' : -
hJ 2h_J. hJ | (4-79)

The last two equations provide a compact scheme for final time integration.
The forward time integration starts at the initial time, t = o, at which the
initial conditiog is known. At the beginning of the first time step, the nodal
head values, h., are specified by the initial condition. These va%geﬁsf /Iélay

be substituted for h_ in equation (4-78) and used in solving for h .
which are then subs'%ituted into equation (4-79) to result in the head values at
the end of the time step. The currently obtained head values thus corre spond
to h" at the beginning of the second time step, and may be used in obtaining
the ﬂead values at the end of this new time step. The procedure is repeated
until all the nodal head values prior to a specified time have been determined.

Equation (4-78) is a set of linear and mildly non-linear algebraic
equat}kc%x/lg. The non-linear equations involve the non-linear coefficients,
C I , which are contributed by elements in the non-Darcy subregion.
leiese coefficients have to be evaluated in terms of the unknown nodal values
of h at time t +At/9, as they are associated with coefficier_l;c rt& of the finite
elements. However, provided that the values of hJ and 4 /2 at a1 t{lfé; _
nodal points of the flow region are known, it is possible tIo solve for hy —%
iteratively. The procedure is to firstly calculate matrix[ Ct* At 7 in terms
of h, which are used as starting values, and solve for ﬁt+At/2

. + _ J ’
then use the values of h t+At/z just obtained to reform the non-linear elements

J
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t+aAt

of matrix[ C 1 , and resolve for mere accurate values of h

The solving process is repeated until the change in successive values of
h t+at /o

t+ At/

_ is within a prescribed he:a.c@c tolerance. When convergence is
ensured, the last set of values of h Aty may be substituted into
€quation (4-79) to obtain the nodal values at t+ At. :

4.2.5 Treatment of Conditions on the Well Boundary

" In solving the problem of flow toward a pumped well, special treat-
ment must be given to the conditions prevailing on the well boundary. Two
types of well boundary condition are possible, depending on the pumping op-
‘eration. If the well is pumped at a constant discharge, the condition of
prescribed flow rate will prevail. On the other hand, if it is pumped such
that the pumping water level is held constant, the prescribed head condition
will result. These two types of condition may be dealt with in the follow-
ing manner.

(i) Prescribed Head Condition

- Congider a typical pumped well shown in Fig.(4-b). As indicated in
the figure, the first portion of the well boundary is screened and the re-
maining portion is cased. If the water level is maintained constant

throughout the pumping period, the head values at the nodes situated on the = -

well screen will be constant with time and equal to the known.elevation of
the water level above the datum plane. '

-..Z.-. .

[N CRTY)

Fo i

Fig. (4-6): The boundary of a typical pumped well.

In order to incorporate the prescribed head condition-into equation

e
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(4-178), the following scheme for partitioning the gross matrices in this
equation is employed. ' -

Preserving the capital and small letter subscript notation, let &
and j be a Greek letter and a small letter subscripts referring to the
nodes situated on the well screen and the remaining nodes in the flow
region respectively. Hence it follows that & ranges from 1 to K, .j -
ranges from K+1 to,n, and equation (4-79) may be expanded. On intro-
ducing X5 = hjy 2 and expanding subscript J, the following equation
results.

At 1 t
et 4 (—— = + - — -
5— G+ D, R (2 CjI + DjI_) Xj D h Djlhj 5 By (4-80)
where the superscripts have been dropped from matrices
Ct+At/2 Ft+At_/2 ond ht
Now the prescribed head conditions require that
xy=hy = H | | (4-81)
for = 1 iiienneee K

Substituting the above equation into equation (4-80) and rearranging
gives : :

At e b, - Do oAt o po At ]
(5= Cr+ D Xy = Djrby =75~ Cupfr 75 Fi (4-82)

By expanding subscript I, equation (4- 82);can be expanded to give the
following equations: '

At~ . - .P..h. - At _ At o -
( R le + DJI) X] -_Dthj 5 Cofi hoc 5 Fi (4-83)
and

_._..M' . . = Ch. - At~ . oAt -

( 5 CJ/?+ Djﬁ) X] DJ/BhJ 5 C]/B’ hJ 5 ) (4-84)

where j is a small letter subscript having the same range as i, and 2B is a
Greek letter subscript having the same,range as ol

Equé.tib_n (4—83_) r_epres'ent's'_a system of n-K equatidns;’--. If the non-
linear coefficients, Cji, are evaluated in terms of the known nodal head

values, the equations may be solved for Xj by employing the gaussian
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elimination process. The non-linear coefficients, C'i' can then be re-
calculated in terms of the current values of X'j, and tHe equations resolved
until convergence results.

Also if required, the values of the flux at the nodal points along the
well screen can be calculated by substituting the last set of values of-x-j
into equation (4-84) and solving for F g

Thus from equation (4-84) -

Ee 2 o hee e - (. a2 -
| i;- X, DJF hy Cip b (CJﬁ 3 Djﬁ)_xj (4-85)
The totalwelldischarge Q is given by
Q= () B, (4- 86)
p=1 -

(ii) Prescribed Flow Rate Condition

In the extraction of groundwater by pumping, it is common practice to
maintain constant total discharge from the well throughout the pumping
period. Accordingly, since the total flow rate is fixed, the water level
in the well and hence the hydraulic head along the pervious portion of the
well boundary must vary with time.

Consider the well shown in Fig. (4-6). If Q is the prescribed flow
rate, the prescribed flow rate condition will be given by '

K
Q = Z F (4- 87)
/9=1

where Fo{ are nodal flux values.

Also the requirement of constant head distribution along the well screen
at time t +At/2 is given by

it A2 h " Atz _ L. - 5P AYZ (4 g
t+ &t/2 . : .
where H is the unknown height of the water level at time t+At/2.

In the general case where the distribution of flux along the well
screen is non-uniform, the prescribed flow rate condition is satisfied by
t+4t/2 adjusting the value of Htt At/2 yntil equation (4-87) is approximately
satisfied. The procedure is to assume a value of Hi*t At/ 2, proceed in the
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same way as in the case of the prescribed head condition and solve for
Fpg , then check if equation (4-87) is satisfied within the prescmbed tol-
erance of Q. If the equationis not satisfied the value of H t+ /2 ig
adjusted by assuming that the total well discharging rate is proportion to
the well drawdown, which is defined as the difference between the initial
height of the water table and the height of the pumping water level.

In the simpler case of flow where the distribution of flux along the
well screen is known to be uniform, the prescribed flow rate condition
may be incorporated into equation (4-78). The detailed treatment has
been presented by Javandel and Witherspoon (1968).

4.2.6 Elimination Scheme for Solving a System of Linear Equations

The assemblage of element matrices leads to a system ofn simultaneous
equations which, after imposing the conditions prevailing on the well bound-
ary, reduces to a system of n-K equations as represented by equation (4-83).
The reduced system is linearised by evaluating the non-linear coefficients
Cji in the eguations in terms of the known nodal values of the hydraulic head.

A banded elimination scheme is employed to solve for the n-K unknowns
in the linear system of equations. The scheme takes into account the
sparseness and symmetry of the gross matrices, [C]and [D]. The two
matrices are arrangedin compact banded form by numbering the nodes in
the flow region in consecutive order. Proper numbering reduces the band-
width to a minimum. The process of elimination is accomplished by re-
ducing the system of equations to an equivalent triangular form through a
series of arithmetic operations on the coefficients of the equations. Then,
sta.rtmg from the last equation the last unknown is solved, and the remaining
unknowns are obtained by the process of back substitution into the previous
equations.

Due to symmetry of matrices [C]and [D])it is only necessary to
operate on the elements in their upper triangles. The half band-width of
each row is computed as the length between the diagonal element and the
last non-zero element in the row., In a computer subroutine developed,
the two matrices are converted into gross vectors by stringing together
the half-bands of all successive rows. This conversion partly eliminates
the problem of insufficient computer capacity, as only a small part of the
two gross matrices need to be stored. Furthermore, a smaller number
of necessary arithmetic operations considerably cuts down the solution
time,
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5. Conclusions and Further Work

- Hydraulic principles and field equations applicable to transient,
three dimensional, two regime well flow have been developed. The
two flow regimes, namely Darcy and non-Darcy flow regimes, were con-
sidered to be distinct. Transition from Darcy to non-Darcy flow was in-
dicated by the critical Reynolds number, and non-Darcy flow was described
by the Forchheimer non-linear velocity-gradient equation of flow through
isotropic porous media.

A generalised variational principle for transient, two regime well
flow through confined and unconfined aquifers has been established. Energy
approach to well flow problems has been proposed, and an energy theorem
has been stated, proved and directly related to the variational principle.

A general formulation of the finite element method for analysing
- three-dimensional confined flow has been presented. Axi-symmetric
confined flow problems have been solved by using triangular and iso-
parametric finite elements. Typical results obtained for steady state
flow will be presented in Section C.

It is recommended that addltlonal research should be carrled out
to attam the followmg alms -

(i) To develop a better understanding of flow transition and a more
satisfactory criterion to describe the onset of non- Darcy flow than the
critical Reynolds number used in the present study.

(ii) To investigate non-Darcy flow.through anisotropic porous media
and develop macroscopic, non-linear, velocity-gradient relations de-
scribing the flow.

(iii) To extend the generalised variational principle and energy theorem
to describe two regime well flow through anisotropic aquifers.

(i\}) To extend the finite element formulatlon of confined flow prob] ems
presented to unconfined flow problems.
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