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~ ABSTRACT

The significance of computer-based numerical methods in describing non-
reactive solute movement through the unsaturated soil zone is discussed and an
implicit finite difference model of water movement in unsaturated soils is
. outlined. The development of an explicit finite difference model of solute
movement is then described in detail and its use in conjunction with the soil
" water model explained. The solute model is verified by comparing the numerical
| results with a quasi-analytical solution developed for a constant-valued
i hydrodynamic dispersion coefficient. Further verification of the model is

i then undertaken using experimental data for solute movement during horizontal

| absorption under constant concentration and constant Flux conditions. The

, experimental results and the numerical solutions provide the basis for a detail-
! ed analysis of the hydrodynamic dispersion coefficient in relation to velocity-
| dependent effects. The use of the model in simulating solute movement during

| an intermittent water application regime is described using a sandy loam as the
-%porbus material. An extensive annotated bibliography is included as an Appendix
‘to the report,
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i GENERAL INTRODUCTION

The unsaturated zone is the medium through which soluble salts and
pollutants originating at the soil surface are conveyed to the groundwater
system. In recent years the use of computer-based numerical models has en-
abled a study in detail to be made of a wide range of unsaturated flow sys-
tems involving the movement of 'pure' water. The stage has been reached
where research workers are now extending such work to incorporate the
simultaneous movement of solute or pollutant. The successful development
of these studies will provide guidelines for environmental control in several
problem areas. These include leaching strategies for saline soils, fertiliser
and pesticide movement in agricultural systems and water quality changes dur-
ing percolation through areas used for the landfill disposal of garbage.

The initial objective of the project was to develop and test a numerical
system capable of describing the movement of solutes and pollutants through a
soil profile to the water table under an intermittent water application regime.
1t became evident as the project developed that time constraints would require
the above objective to be slightly modified by considering only solute move-
ment. In addition, relatively shallow soil profiles have been simulated
rather than the six-metre unsaturated zone of the local Botany Basin uncon-
fined aquifer as originally envisaged.

buring the past decade a comprehensive computer-based numerical approach
to water movement in unsaturated soils has been developed in The School of
Civil Engineering at The University of New South Wales. The range of initial
conditions, boundary conditions and material properties able to be described
by the computer program allows it to be used in simulating many naturally-
occurring environmental systems. Chapter 2 in this report gives .a brief sum-
mary of this water movement model emphasizing those aspects of particular in-
terest in solute movement studies.

The development of the explicit finite difference model for non-reactive
solute movement is described in detail in Chapter 3 with the related stability
analysis being discussed in Chapter 4. The verification of the model for
solute movement involving a constant-valued hydrodynamic dispersion coefficient
is achieved by using a quasi-analytical solution developed for this purpose and
described in Chapter 5. In the following three chapters the numerical solute
analysis is checked against experimental results obtained for a fine sand for
both horizontal absorption under constant concentration and constant flux con-
ditions and for infiltration-redistribution. Finally, the ability of the
model to simulate solute movement under intermittent conditions is discussed
in Chapter 9 using Rubicon sandy loam as the porous material.

A significant and useful component of this report is Appendix A which
provides an extensive annotated bibliography of literature in the solute
movement field.




2 NUMERICAL ANALYSIS OF WATER MOVEMEN
2.1 Introduction

T IN UNSATURATED SOILS

One-dimensional ve

rtical water movement in a rigid, homogeneous, porous,
unsaturated material p

ay be described by the equation

oh ] . oh ]
b5 = 5 ko £+ 37 [K()] 2.1
where h soil water potential (expressed on a weight
basis) relative to atmospheric pressure [L]

t time [T]

z flow direction ordinate, positive upwards f1]

Cs(h) = 38/8h = specific water capacity [L7?

6 volumetric water content [L3L72]

K(h) unsaturated hydraulic conductivity frr-1]
Equation 2,1 is

& convenient form of the unsaturated flow equa
been used in solving a wide range of

unsaturated zone. Whisler and Watson
erical solution of equation 2.1 which
proach in the analysis,
and, in its present form,
dependent boundary conditicns,
geneity, and intermittency in t

tion and has

problems involving the hydrology of the
(1968) described a computer-based num-
used an implicit finite difference ap-

development, equation 2.1 was modifi
giving

Because of the marked hysteresis in h{8) and therefore in K(h}, systems
invelving the intermittency of water application, such as ip a series of
infiltration—redistribution cycles, require the inclusion of a hysteresis model
in the dataset. Three different hysteresis models have been developed for use
with the general computer package - an interpolative model (Watson and Perrens

1873) and two domain models. The interpolative model is the simplest, and de-
fines secondary and higher order scanni i

draining scanning curves. However i

odel and is not limited
- However, it suffers the disad-

core storage and execution
s which is much simpler and requires lessh(g)

ently been developed by Banerjee (persconal
communication).
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In this study the timing of the infiltration-redistribution sequences in
chapter € is such that the interpolative hysteresis model can be safely used
in the analysis.

2.3 An Implicit Finite Difference Model For Water Flow

To solve equation 2.1 (or equation 2.2} the space-time domain is written
in incremental form as

z; = (i -1) Az i = 1,2, ... N, N+1)
Az = - L/N L = Length of colum

J
% = rzl At j =z 1

In order to avoid confusion, the following equations are developed for equation
2.1. The necessary changes for equation 2.2 are straightforward. The follow-
ing approximations are made: *

h(i+1,j+%) = L[h(i+1,j) + h(i+l,j+1)] 2.3a
h(i,j+s) = %[h(i,j) + h(i,j+D] 2.3b
h(i-1,j+% = %[h(i-1,7) + h(i-1,3+1)] : 2.3¢c

and Taylor Series expansions used in both time and space. The central differ-
ence approximation to the L.H.S. of equation 2.1 then becomes

Cs g_l; (i,i+%) = Cg(1,i#)[h(i,i+1) - h(i,§)]/at + 0(A1)? 2.4
and for the space derivatives, using equations 2.3a, b, c

sh

o2 (i, )

(h(i+1,3) +h(i+1,j+1) -h(i,5) - h(i,j+1)]/2Az + 0(A2)? 2.5a

D (i, 54

[h(i,}) #+h(i,j+1) -h(i-1,3) -h(i-1,j+1) /282 +0(Az)%  2.5b

o ko) 216,50 = [Kivs,ien 2 (v, je) -

K(i-%, i+ S0 (i-%,5+5)1/0z + 0(Az)? 2.6
o (KM IE, 5+ = [K(i%,5+%) - K(i-%,5+5)]/bz + 0(A2) 2.7




On substituting equations 2.4 to 2.7 into equation 2.1,

Cs(1,J9) [h(i,3+1) -h(i,j)I/at =
(i, 34 (i, §) *h(i+1,5+1) -h(i,j) - h(i,j+1)]
- K(i-%, 54 [n(i,5) +h(i,j+1) -h(i-1,3) -h(i-1,5+1) ]}/2(a2) 2

+ [K(i4%,54%) - K(i-%,5+3) 1/az + 0L (At)? + (Az)2]

Let K(i+}, j+)

[K(i+1,3) + K(i+1,541) + K(i,3) +K(i,j+1)])/4

KO-%,3+8) = [R(,5) +K(,5+1) +K(@E-1, 1) *K(i-1,3+1)1/4

- %
The terms of ‘equation 2.8 are collected and arranged in the general form

Ay h(i-1,j+1) +B; h(i,j+1) +C; h(i+l,j+1) = p

i

where all the terms at the old (known) time level (j) are contained in the
right hand side, Dj. The coefficients of equation 2.10 are then

A; = - K(i-%,j+%)/2(Az)2
Ci = - K(i+},j+k)/2(A2)2

Bi = Cs(i,j+h)/bt - A - o)
Di = - Ai h(i—l’j) +[C5(izj+1/2J/At+Ai+Ci] h(i’j)
- Ci h(i+1,j) + 202[a; -G;1]
Equation 2.10, expanded for each of the

finite difference grid of N intervals in
(N-1} nonilinear tridiagonal simultaneous e

{N-1) internal node points of the

quations in (N+1) unknowns. The

pplication of a top and bottom
boundary condition to eliminate the terms in h(1

ively. The method of solution of the tridiagonal
is the well known Thomas Algorithm, details of wh
The algorithm involves two passes through the equations,
followed by a solution sweep in the reverse direction,

To remove the nonlinearity in the equations, an iteration process is us
in which an initial estimate of the h(i,j+1) values at each point is made an
used to determine the coefficients A;, Bj, Ci and D3j. The initial condition
is used as the first set of h(i,j) values and also as the first estimate of
h{i,j+1) values to evaluate A;, B;, C; and D;. The resulting set of 1inear
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algebraic equations is solved using the Thomas algorithm to obtain an improved
set of h(i,j+1) values. This improved estimate of h(i,j+1) is in turn used to
get new values of Aj, Bj, C; and Dj and a second improved estimate of the
h{(i,j+1) values is obtained. The process is continued until satisfactory con-
vergence occurs. The solution to the problem proceeds in steps of At, along
the t axis. A variable timestep is used to achieve an overall optimal pro-
gression, based upon the time rate of change in h values at each node and the
number of iterations required for convergence.

All boundary conditions are specified by the formulation of both a prepar-
ation and a solution equation for each case. The former equation is used to
eliminate terms in h(1,j+1) or h(N+1,j+1) from the tridiagonal equations, and
the latter to determine a solution for h(1,j+1} or h(N+1,j+1) after the tri-
diagonal equations have been solved.

2.4 Conclusion

As indicated in the Intreduction, the computer program based on the im-
plicit finite difference model outlined above has been successfully applied
to a wide range of unsaturated one-dimensional flow problems., The applications
involve various boundary conditions including surface ponding, steady and time-
dependent precipitation at the soil surface, redistribution and drainage, a
stationary or moving water table and a controlled flux from the profile (for
example, Whisler and Watson 1968 and 1969, Watson et al 1973, Watson and
Perrens 1973, Webb and Watson 1977, Ayers and Watson 1977). Other systems
studied include scale hsterogeneous media (Whisler et al 1972), intermittent
surface flux involving soil water hysteresis (Watson and Perrens 1973, Lees
and Watson 1975}, air compression effects in bounded profiles (Watson and
Curtis 1975) and stratified profiles (Watson and Whisler 1976). The model
has also been used to simulate the rainfall-runoff process (Watson and Lees
1975} and has been linked with a steady-state drainage equation to analyse
tile drainage systems,

The soil water program package provides the external controls and, in
addition provides the necessary data on soil water content and flux distrib-
utions at each timestep. These are used as input for the solute movement
analysis described in Chapter 3.




3 NUMERICAL ANALYSIS OF NON-REACTIVE SOLUTE MOVEMENT
3.1 Introduction

The mass transport of solutes in porous media is generally assumed to he
the net effect of convection (viscous movement of the soil water), diffusion
{thermal motion of the solute within the water) and mechanical dispersion
{solute mixing due to pore water velocity distributions). Diffusion is the
only process that can occur when the soil water is mnot mobile. :

The differential equation describing solute movement under isothermal,
unsteady state conditions in one dimension in unsaturated porous materials,
when the solute is assumed to be non-reactive and sufficiently dilute so that
density changes can be neglected, is written as

2e8) _ 2 [N
ot TS [De(e’V) az 3z (qc) 3.1

where c solute concentration of the soil
solution [ML=3%]
Do(0,v) Ilongitudinal combined diffusion-
dispersion coefficient [L2T71]
q volumetric {Darcy) flux of
solution [L3L-27-1]

In the above equation, Dg is defined as a function of & and v (pore
water velocity) following for example Bresler (1973). Other workers (e.g.
Davidson et al., 1975) use a different form of equation 3,1, where D, is
replaced by 8D,. Our choice of definition is particularly useful when compar-
ing the numerical model performance with the analytical solution of Chapter 5,

3.2 A Brief Discussion of Hydrodynamic Dispersion

Detailed studies have been carried out in recent times on understanding
the nature of miscible displacement in porous media (see reviews by Biggar
and Nielsen, 1967 and Fried and Combarnous, 1971). It is apparent that an
adequate quantitative and predictive theory of dispersion in partially satur-
ated porous media does not exist (Wilson and Gelhar, 1974), '

The components of hydrodynamic dispersion are qualitatively described
below following Fried and Combarnous (1971) .~

Mechanical Dispersion

This occurs when fluid flows through a porous medium with a non-uniform
velocity distribution resulting from pore boundary effects. Zero velocity om
the solid surfaces creates 3 velocity gradient in the fluid phase {(Fig 3.1(a)),
variations in pore dimensions cause discrepancies between the maximum pore
velocities along the pore axes (Fig 3.1(b)), and the streamlines fluctuate with
respect to the mean direction of flow (Fig 3.1(c)).

Many experiments and theoretical studies have shown that the magnitude of
the mechanical dispersion coefficient D, in a given porous medium depends upon
the average flow velocity. For saturated steady state conditions it has been
shown (Ogata 1970) that often Dy, can be taken to be

DL(v) = 8]v]| 3.2
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where v is the average pore water velocity [LT-1]
B is an experimental constant, a function of
the characteristics of the porous medium [L]

Fluid Particles: <
o at time t
e at time t+At

Fig 3.1 The components of dispersion

Bresler (1973) assumed that a similar relationship held for unsteady unsaturat-
ed flow conditions. Many other workers have used this relationship (Passioura,
1971, De Smedt §Wierenga, 1978, Davidson et al, 1975).

Diffusion

The physiochemical dispersion is termed molecular diffusion. It results
from the chemical potential gradient, which is correlated to the solution
concentration. Fig 3.2 illustrates the two different diffusion mechanisms.
Inside a streamtube, the concentration gradient tends to vanish as in (a},
whilst between adjacent streamtubes there is a mass transfer by diffusion [see

(b)] These two mechanisms produce a longitudinal and a transverse effect, as
in mechanical dispersion [see (c}].

time = t+Af

The way diffusion appears in dispersion




Diffusion of soclute in a uniform body of water can be described macro-

scopically by Fick's first law. In soils, the molecular diffusion coefficient’
Dp is less than the equivalent coefficient in a free wvater system Dy, and is

dependent upon the water content (Bresler, 1973). The relationship is of the
type

Dp(8) = Dy a exp(d 6) 3.3

where a and b are empirical constants characterising the soil. Bresier (1973)
follows Olsen and Kemper (1968) and uses b = 10 and 'a' ranging from 0.001 to

0.005 depending upon the surface area of the particular soil (clay to sandy
loam).

Effective Dispersion Coefficient

In general, molecular diffusion and mechanical dispersion occur simultan-
eously, each contributing to the Ffinal hydrodynamic dispersion of the solution,
It is usually assumed that solutes are transported by convection at some aver-
age velocity of solution, and dispersed about the mean position of the fromt.
For a fine sand material, this assumption is supported by the work of Watson
and Jones (1981a).

Mathematically, mechanical dispersion can be treated as a diffusion
process. The joint effect of diffusion and dispersion is given by combining
their mathematical expressions to give

De = (D + Dp) 3.4

where Do 1is the effective dispersion coefficient (function of 8,v)
DL 1is the mechanical dispersion coefficient (function of v)
DP is the molecular diffusion coefficient (function of 0}

5.3 A Convective Transport Model

The first published mumerical model capable of simulating simultaneous
one-dimensional flow of water and solute in unsaturated soils under unsteady
flow conditions was that of Bresler and Hanks (1969).

It was assumed that solute was non-reactive, dispersive flow so small
compared to convective flow that it could be neglected, and further that no

sources (or sinks) were present. Water flow computations were considered to

be independent of solute concentration and isothermal conditions applied. The

time during a wetting or drying cycle (including infiltration, redistribution
and evaporation). The derivation of this model is not given here, as full de-
tails are in the referenced paper.

This convective model was programmed and tested as part of the project,
but discarded as unsuitable for further development for the following reasons:-

(i) the solution technique introduces significant numerical dispersion;

(ii) quantitative effects of hydrodynamic dispersion cannot be traced;

(1ii) simulations are restricted to 'semi-infinite!' profiles;

(iv} the model is unsuited to further developments incorporating

reactive solute transport.
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\acro-
fficient 3.4 A Convective - Dispersive Solute Model
nd is . .
Expanding equation 3.1
s of the P &=
38 3¢ 3%c dc 9q
5.3 S T T We) 32 * Do g7 - 457 = © 5, 3.5
r (1973) Introducting the equation of continuity for one-dimensional flow of water in
rated soil '
.001 to unsatu
sandy
L 3.6
ot dz
mlitan- Substituting equation 3.6 into equation 3.5 and rearranging gives
solution. :
e aver- Jc De 32¢ 3c
—_ = e— W .
front. at 8 9z2 9z 3.7
latson
ob
1 e
m where o= [3-x-2 3.8
‘ining [6 6 Bz]
At this point Davidson et al (1975) assume that D6 is 1ﬂdependenL of
depth, thus reducing their form of equation 3.8 to
3.4
D
= ﬂ - e —Bﬁ—
W 5 5T Bad 3.9
The more general equation 3.8 is used in this study.
Solution of equation 3.7, which is a linear parabolic equation in the
dependent variable ¢, requires specification of an initial condition and two
boundary conditions for c.
*ous At the surface, the total solute flux is given by
-eady
11 J = - D o, qc 3.10
- no dz
«d to
-- The where during infiltration, J(1,t) = q(1,t) c,y(t) t>0 3,11
ny
;;ign and during redistribution/drainage, J(1,t) = O t>0 3.12
e~
Initial conditions are c(z,0) = ecn(z) 0<z<-L t=0 3,13
ect, .
asons:- .
rsiom; ¢ Where ¢, is the solute concentration in the infiltrating water, J(1,t) the
ced; ! solute flux applied at the surface, ¢,{z) the predetermined 1n1t1a1 concentrat-

ion profile, and L the length of the column.
At the lower boundary the appropriate condition for a 'semi infinite®
column is

limit
z > - ¢c{z,t)

= ¢(z,t=0) t=0 3.14




If a finite column is considered, the condition favoured by most authors is
—_— = = - >
N2 0 at z L t 0 3.15

In this study the combined dispersien coefficient Dg has been taken to be
of the form given by equation 3.4, but with the molecular diffusion component
being a constant value. The complete problem as defined by equations 3.7 to
3.15 is solved numerically using an explicit finite difference approach.

3.5 Explicit Finite Difference Solute Model

The space-time domain is written in incremental form as

Zy = (i']’) Az is= 1;23"'N: (N+1) )
Az = - L/N

t, = }E At izl

J r=1

A Taylor Series expansion of c{i,j) in the time dimension gives

oA 2 2 PR
C(i,j+1) = C(l,_]) + At ac(alt:J) + (AE) 3 C(I,j) + OCAt)g

otz
rearranging §E%%?ll. = 0(1’J+li£'0(1,33 _ %;.3 iﬁi{J) + 0(At)2 3.16

The term 3%¢/3t? in equation 3.16 requires knowledge of ¢ over three timesteps
if a finite difference approximation of 0(At)? is to be maintained., Since
solute flow under unsaturated unsteady state conditions is dominated by con-
vection in the cases being considered, an approximation to 8%c¢/3t2 assuming
pure convection is reasonable. This approach follows Lantz (1971) and Bresler
(1973).

Assuming zero dispersion, and putting v = q/8 reduces equation 3.7 to

§€=-V—a? 3.17

Differentiating equation 3.17 with respect to both time and space

3% _ ov 3¢ 3%c
3 7 "5t e -V ay 5.18
- % v dc 3%c
st oz © "5z 3z - V5T 5.19
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from equations 3.18 and 3.19

Combining equations 3.16 and 3.20 we obtain
dc(i,i) _ clii*D) - c(i,i) At a0 5y 3%cliyd)
ot At 2 0z2
B %g [v(i,i) Bv(aiz,j) ) Bv(ait,j)] ac(aiz,j) + 0(At)2 3 21

Substituting equation 3.21 into equation 3.7 gives

c(i,j+1) - c(i,iy _ tDeli,d) , At 2.5 3%c(i,i) :
At = [ﬁi,j) + “Z_V {1:]}] —"5—2_2_-

LGy - A v,y ) rlLdlyy 2eBd) L opny? 522

It is clear from equation 3.22 that a first order approximation to the time
derivative would introduce artificial dispersion and comvection terms to

the solute transport equation.
Taylor Series expansions in space about c(i,j) give

c(i,j) - Az

. s 2 N2 . p: =
c(i-1,3) BCE;;]) + (A;) 9 ﬁﬁ;;J) + 0(Az)® 3.23

. 2w ra s
ac(alzsj) + (A;) 3 CB(ZIZ’}) + O(AZ)s 3.24

c(i,j) + bz

1]

c(i+1,})

Adding equations 3.23 and 3.24 and rearranging gives

32c(i,j) _ c(i+l,j) - 2c(i,j) + c(i-1,3) 2
vl DL + 0(Az) 3.25

Subtracting equation 3.23 from 3.24 gives, on rearranging

dc(i,j) _ c(i+l,j) - c(i-1,]) 2
D) o - + 0(Az) 3.26

Combining equations 3.22, 3.25 and 3.26, an explicit finite difference ap-
proximation correct to o{(Az)? + (At)?] is obtained for equation 3.7. Re-
arranging to give an expression for the unknown cf{i,j+1) gives




¢(i,3+1) = c(i,§) + At F(i,j) [SU2L) - 2c(,5) + c(i-1,5);

(Az)?
- 8t 6(1,3) (SRl eGLidy L oraryz o (2] 3.27
De (i, ] .
where R(i,i) = B—ek(.l—l,%+%t- v2(i,}) 3.28
6(1,3) = Wi, i) - B (v(i,5) L) vl 3.29
and using 91%5522. - V(i+1’j)2&zv(i'1’3) + 0(A2)? 3.30
W(i,3) _ v{i,j+D) - v{i,j)
a3) - + 0(AL) 3.31

Suitable finite difference a
ions 3.11, 3.12 and 3.15 are respectively

pproximations for the boundary conditions, equat-

a(1,3+1) cg = -De(1,j+1) ¢(1,j+1) + q(1,j+1) c(1,j+1) 3.32

Ac{l,j+1) =0 3.33

Ac(N+1,j+1) = 0 3.34

where be{l,j+1) = [-3c(l,j+1) + 4¢(2,j+1) -c(3,j+1)3/2a2 3,35
Ac(N+1,j+1) = [3c(N+1,j+1) ~ 4¢(N,j+1) + c(N-1,j+1}1/2Az 3.36

are forward and backward finite difference approximations to 0(Az}? of dc/oz

at z=0 and z = -L respectively,

Equations 3.27 to 3.36 allow a direct solution for the unknown c(i,j+1).
Numerical dispersion, which results from the truncation of the higher order
terms in the Taylor Series is virtually eliminated when the second order

terms are included in the analysis {Chaudhari, 1971, Lantz, 1971, Bresler,

1973).

3.6 Conclusion

The .implicit finite difference model of Chapter 2 is unconditionally

stable. That is, there are no r

estrictions placed on the magnitude of either

Az or At for a convergent, non-oscillating solution, These may be chosen
solely on the basis of required accuracy which is of order {(At)? + (Az)2},

However, the explicit model above 7s subject to restri
both At and Az for a convergent and non-oscillatory solution.

siderations relevant to the explicit solute model are detailed
ing chapter.
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4 NUMERICAL STABILITY OF THE SOLUTE ANALYSIS

4.1 Introduction

For any finite difference approximation to a partial differential equat-
jon to be reasonably accurate, two different, albeit interrelated conditions
need to be satisfied. Firstly, the approximate solution must converge to the
exact solution as the discretization by time and space steps approaches zero,
and secondly any errors in the approximate solution must not propagate but
decay as the solution process proceeds.

4.2 Combined Convection - Diffusion Equation

The finite difference form of the solute transport equation developed
previously was

c(i,j+1) = c(i,i) + At F(i,))[c(@+1,3) - 2¢(i,3) + c(i-1,5)1/(42)*

- At 6(1,5)[e(i+1,i) - c(i-1,1)1/22 (3.27)

1f it can be assumed that F(i,j) and G(i,j) are constant, or at least that
they vary very slowly, a von Neumann stability analysis of equation 3.27 is
applicable. If the stability criteria derived assuming constant F and G are
applied locally for the case where the coefficients are variable, then it is
reasonable to expect that the equation will be stable, provided that these
criteria are satisfied at every point of the field (see for example, Roache
1976 and Fromm 1964). There is considerable numerical evidence to support
this contention. For two-level differénce schemes with one dependent var-
iable and any mumber of independent variables, the von Neumann condition is
sufficient as well as necessary for stability.
The following substitutions are made

d = At F(i,j)/(A2)® 4.1
e = At G(i,j)/(Az) 4.2
where d is termed the 'diffusion numbet', and ¢ the 'Courant mumber'. A von

Neumann stability analysis applies a finite Pourier series expansion of the
solution to the model equation and then studies the amplification or decay of
each mode separately to determine instability or stability.

Each Fourier component of the solution is written

e(i,j) = V{j) exp(ikiAz) 4.3

where V{j) is the amplification function at time j of the particular component

whose wavenumber is k, and where © = /-1.

Similarly c(itl,j) = V() explik(itl)Az} ' 4.4

V{(j+1) exp(<fkihz) 4.5

c(i,j+1)

13




Substituting equations 4.3 to 4.5 intc equation 3.27 gives

V(j+1} exp(ikifz) = V({i} exp(<kiAz)

+d V(3j) exp(ikidz) [exp(ikaz) - 2 + exp(-ikAz) ]
- g-V(j) exp(tkidz) [exp(ikAz) - exp(-ikAz)] 4.6

Cancelling the term exp(ZkiAz) in e

quation 4.6, and defining the phase angle
as ¢ = kAz, equation 4.6 reduces to

YO = V14 d {exp(i9) - 2 + exp(-i0)) - S {exp(ig), - exp(-i9)}] 4.7

The amplification factor of the function

V(i) is defined as A where
V(J+1) = A V(j). 1If the identities

N
1
{exp(2¢) + exp(-i9)} = 2 cos ¢ 4.8 £
lexp(2) - exp(-i¢)} = 27 sin ¢ 4.9
are substituted into equation 4.7, an expression for the amplification factor
is obtained which, on rearranging is
A = (1-2d) + 24 cos $ - Z¢ sin ¢ 4.10
B
. . 2
. Note that A = A(¢), ie the amplification factor varies for each Fourier com- i
: ponent, Equation 4.10 can be recognised as the equation of an ellipse,
i centred on (1 -ZdU‘on the real axis, with axis half-lengths of 24 on the real
i axis and ¢ on the imaginary axis.
i Clearly for stability [A[Sl which, in terms of Fig 4.1 requires that the
; ellipse must lie entirely within the unit circle. By inspection ¢ < I,d=<3
and ¢ < 2d. The most general restriction is found by solving for the modulus T
of A (with the complex conjugate denoted by A). e
t
~ ’ 4
[Al? = AR = [(1-2d) + 2d cos $1* + ?sin?¢ < 1 4.11 |
A méximum is sought for |A|? in terms of cos ¢. Thus
i
CILY (4d - 8d%) + (8 - 2¢%) cos ¢ . 4,12 °
d(cos ¢) : * ,

2 2
Steos 77 - (84 20%)




) \ / z
!
] ) { /% Real £ 1 + Reat
) I 1 ‘-_M u 2d> 1 /J |
4.6 \ / \ / |
) / \ 2 d /}
AN AN t2
Se /// Se~7
angle r b
131 4.7 Fig 4.1 Polar diagram of the amplification factor 'A! from
equation 4,10, For stability, the ellipse must fall

-within the unit circle

Note that a maximum only occurs if the second derivative (equation 4.13) is
iess than zero, ie 2d < e. From equation 4.12 the maximum (or minimum) occurs

4.8 for

4.0 cos ¢ = 2d(1-2d)/(c?- 4d%) ‘ 4,14
factor Substituting equation 4.14 into equation 4.11 and expanding
|2 = ®(e?-4d+1)/(c®-4d%) < 1 4.15
4.10
Equation 4.15 implies (c® - 2d)? < 0, but for a maximum equation 4.13 required
o 2d<e. As the latter condition cannot be met, the conclusion is that no max-
com- imum can occur for |A|* < 1. Thus
real
¢ - ..
t the 7?2 or Az = 2F(i,j)/6(i,3) 4.16
ds<y
odulus This criterion is called the cell Reynolds number restriction (R, =e/d<2) and
ensures zero overshoot. Whilst no maximum occurs if equation 4.16 is satisfied,
_ the extreme values of cos ¢ must still be considered. If cos ¢ = -1, equation
4.11 4.11 gives {
L or At < (Az)2/2F(4,i) 4.17

d <.

4 i% and if cos ¢ = +1 equation 4.11 merely gives |a|? = 1 implying stability.
’ The above analysis indicates two conditions, equations 4,16 and 4.17,
E which are both necessary and together sufficient to ensure stability for




equation 3.27 in the case where both F{i,j) and G(i,3) are constant. The
effects of spatially varying F{i,j) and G(i
method,

for the solute transport equation.

The numerical model used
step, but not a variable space
a second necessary timestep res

in this study readily co
step. If equations 4.1
triction results

At < 2R(i,j)/6%(i,})

It has been
found that applying these rmined using the most critical

values of B(i,3j) and G(i,j), gives acceptable results when the spa
used is small. Some overshoot, which appears as oscillations behind the
solute front, indicates failure to meet the R. restriction., The location of
the solute front appears to be almost unaffecfed by this failure.

It is readily shown that if flow is purely diffusive, stability is guar-

anteed by satisfying equation 4.17 only.
ed,

two criteria, dete

4.3 Alternative Expressions for the First Space Derivative

If the central difference expression for the first space derivative in
equation 3,27 is replaced by a forward or backward finite difference approx-
imation also of accuracy 0(Az}? ive component is intro-

» then a second derivat
duced which effectively increases the dispersion term. For example,

Belg) | c(i+1,3) - c(i,j) + Bz 3%c(i,j)
9z Az ' 2 dz?

By choosing the ap ydrodynamic dispersion

coefficient will ute value of

n the ratio F(i,j)/G(i,j), the
icti Unfortunately, a stab-

At < (Bz)%/[2F*(4,§) + 6(i,5) Az]

Az < F*(4,1)/46(i,5) 4.21

where F*{i,j) includes the additional
4.21 are compared with ¢
{F(i,5) + Lae G(i,j}}
are unchanged.

LAz G(i,j} term. If equations 4.20 and
quations 4,16 and 4,17, with F*{1,j) expressed as

> it is clear that the restrictions on both Az and At

»3) cannot be ascertained by this

Equat-
time

Pes with a variable time-
6 and 4,17 are combined,

4.18

No space step restriction is requir-

+ 0(Az)? 4.19
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[ VERIFICATION OF SOLUTE MODEL

5.1 Introduction

Before the numerical model described in Chapter 3 can be applied with
confidence in simulating non-reactive solute movement for a range of flow
conditions and soil types, it is mnecessary to test a set of results against

‘a known solution. Ideally such a solution should be analytical in nature.

It should be noted that the computer program is written so that the solute
model is linked to, and solved simultaneously with the water flow model. The
solution technique assumes that whilst solute flow is dependent on the water
fiow (via the soil water flux and volumetric water content) the latter is not
affected by the presence of the solute and can thus be evaluated independent-
1ly. The accuracy of the water flow model has already been established through
conparisons with both theoretical and experimental results (Watson et al. 1973,
Ayers and Watson 1977, Watson and You 1980).

Smiles et al. (1978) have developed a convenient quasi-analytical solution
for non-reactive solute flow during unsteady horizontal absorption under con-
stant concentration boundary conditions. This approach has been discussed by
watson and Jones (1981a)particularly in relation to assessing the performance
of the solute model. In this chapter the quasi-analytical solution is dis-
cussed and an alternative integral solution presented. This solution is then
used with a constant-valued dispersion coefficient for verification purposes.

5.2 Quasi-Analytical Approach

The hydrodynamic dispersion of solute during horizontal absorption was
represented by equation 3.1 which is repeated here for convenience. All terms
are defined as previously.

3(6c)
ot

_ 8 dc d
- '5‘}'{ [De(B,V) 'é’x'] - K (qc) 5.1

Smiles et al. £1978) showed that if the velocity dependence of Dg were neglect-
ed, as seems appropriate for many natural systems exhibiting small Péclet
numbers, then equation 5.1 with D (0) replacing De(8,v) would lend itself to
a convenient similarity solution using the transformation A = xt~%, The sim-
jlarity solution is valid for the case of constant concentration boundary
conditions. These conditions for water and solute, together with the initial
conditions, may be written as follows:

o = 8, x > 0 t =0 )
) 5.2

8 = 8, x =0 t 20 )

and c = ¢, x >0 t =0 )
’ ) 5.3

C = C4 x =0 t z 0 )

The flow of water in a rigid horizontal system may be described by the well
known equation




96 ? 36
O (D) B 5.4

where D(0) is the soil water diffusivity. Since
20
q = - D(O) ETY 5.5

following Smiles et al. (1978) equation 5.1 may be written in terms of Dg(6) as

dc _ 9 ac 290 3c
0 5% = 3% [Pe(®) =1 + D(O) 5% 5.6
1
Making the substitution A = xt ¢ in equations 5.2 to 5.6 the following are
obtained
d de dg
ahbe P13 ., 5.7
d d d
o [De(e)a% + %E)Cf =0 5.8
8 = o, A > e )
) 5.9
6 =18, A= 0 )
and c = ¢cp A+ oo )
) 5.10
c = ¢, A= 0 )
do o
where g = 86X + 2D(8) o 6x - j A do 5.11
O

Since 8{A) is unique, equation 5.8 may be written as

-+ [Da(A) 557 + 888 & 5,12
dx e dA 2d '
Smiles et al. (1978) give the solution of equation 5.12 subject to equations
5.9 and 5.10 as

when ¢, > ¢, 5.13

where




5.4

5.5
Da () as
5.6

are

5.7

5.8

5.9

5.10

5.12

s

5.13

5.14

The integration in equation 5.14 is carried out from zero to A. This
contrasts with the more closely defined integration limits of Watson and
Jones (19814) - who take advantage of the linearity of g(A\) in the vicinity
of the solute front as discussed in the next section.

In summary, the quasi-analytical approach first determines 6{A) (Philip,
1955) which allows g(\) to be calculated. This is used in equations 5.13 and
5.14 to find the normalized relationship c(A) and hence c(A). The above sim-
jlarity solution postulates uniqueness not only in 8(A) but also in c(A).
gmiles and Philip (1978) and Smiles et al. (1978) describe a comprehensive set
of experiments using a fine sand-kaolinite mixture as the porous material and
show the uniqueness of c(A) for a range of inhitial water contents and for dif-
ferent solute concentration conditions.

Ain Alternative Integral Solution

pefining A as the value of A at which g(A) = 0, and assuming D,{8) to
be constant in the region of the solute front, equation 5.12 may be written as

2
de . gl —‘}% 7 5.15°

aaz 7D

The g()\) relationship for Bungendore fine sand in the region of interest is

shown in Fig 5.1. For A > A« let the angle between g(A) and the horizontal

(\) axis be oy, and for A < A, let it be oj. Defining Ay as the value of &
where ¢ = Cy, Ap, s the value where c = cp, and c, as the ¢ value at A, then
the integration of equation 5.15 for Ay > A > A, gives '

de A - tan o .
(c-c) = (‘&‘X‘)* [ exp {——4—{)';‘—‘ (l—)\*] } ax 5.16
Ay
Similarly for AL <A <A,
A - tana
I [ * L 2
(c,-c) = (ﬁ)* I exp {'~T§;—‘ (l*—l] } dx 5.17
A

From equations 5.16 and 5.17

de AU -tanaU )
(a—x)* = (ep-c)/ I exp {~—74—5—-e— (A-20%) ax
Ay
'A* - tan Q'.L . :
= (c,-cg)/ J - exp {""40— (-2 dd 5.18
_ i e

If ¢ and ¢ are both known in equation 5.18, then ¢, can be found, thence
(dc/dA),. This.is substituted in equations 5.16 and 5.17 to find the two
'parts’ of c()). The integration is quickly carried out for any value of Dg

once oy and o, are known from the solution of equation 5.11. :




tan o= 0-302

T T
41 42

h=103(ms‘%)

tan e = 0-31¢
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5.3 Comparison Between Numerical Analysis and Quasi-Analytical Solution

In the next chapter, detailed comparisons between numerical and exper-
:mental results are presented for a sand locally known as Bungendore fine
sand. The hydrologic characteristics of that sand are used in this chapter
in carrying out the model verification.

Figure 5.2 shows 'the mean D(8) relationship for a series of four experi-
ments obtained using the Bruce and Klute (1956) methed. The value of the
saturated conductivity (Ksag) was determined as 1.48 x 107° ms™'with a stand-
ard deviation of 0.27 x 10~ ms~}, and the saturated velumetric water content
(Bgat) as 0.34 m®m~®, Using this Kggq¢ value, an appropriate function for K(8)
was chosen as

K(8) = K (878 )4-3%% 5.19

sat sat

The definition of the soil water diffusivity
_ dh
D(B) = X(8) 55 . 5.20

is used in conjunction with equation 5.19 to give a first approximation for
h(6). Spline techniques (see Appendix C) were then used to develop a satis-
factory h(B) relationship. The spline method has several advantages, one
being the ready calculation of the specific water capacity (2h/98) which is
required in the solution process. The resulting K(0) and h{6) relationships
are given in Fig 5.3,

The 8(A) relationship for Bungendore fine sand was calculated using
B(x,t} data obtained from the numerical simulation of horizontal absorption
subject to constant concentration boundary conditions. Similarity was shown
to be preserved exactly, with the 8(x,t) profiles 'collapsing' onto the one
B(A) curve. This is another indication of the accuracy of the water flow
model. The g(A) relationship shown in Fig 5.4 was calculatgd from this 6()}
relationship, and gave the following: A, = 3.96 x 10-% ms™%, tan ay = 0.302
and tan ¢y = 0.316. The €(X) relationship for & constant hydrodynamic dis-
persion coefficient of 10~% m?s™! was then calculated using the alternative
integration technique of section 5.2. It is shown by the continuous line of
Fig 5.5.

The explicit solute program was used -with a very fine grid spacing of
1 mm to minimize 'dvershoot' immediately behind the solute front {due to R.
instability) and the numerical c(x,t) results transformed to &(A) form for
the simulation time t = 2,500 s. These results, plotted as circles in Fig 5.5,
indicate the excellent correspondence with the analytical solution. Although
not included in Fig 5.5, when the c(x,t) numerical data for other times were
transformed to c¢(X), they also 'collapsed' onto the same €(A) curve. This
confirms that the solute program is correctly simulating the similarity hyp-
othesis. The trivial exception occurs at very early times when the number
of nodes affected by the solute movement process are insufficient for accurate
X\ representation. ’ :

The good agreement between numerical and analytical results indicates
that the numerical approach is accurate and generally stable. On this basis,
t@e use of the numerical program in simulating equation 5.1 can be approached
with confidence. It is necessary however to compare the numerical solutions
with experiméntal data to emsure that the physics of the processes involved
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are being correctly simulated, for example, the velocity dependence of the
dispersion coefficient, and the mechanisms of solute transport during redis-
tribution. Experimental data on such aspects are examined in the following
chapters.
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6 SOLUTE MOVEMENT DURING: CONSTANT CONCENTRATION ABSORPTION
%.1 Introduction “f

The quasi-analytical solutlon for the hydrodynamic dispersion of non-
reactive solute during unsteady, horizontal absorption under a constant con-
centration boundary condition is by nature limited due to the simplifying
assumptions concerning D, involved in its derivation. However, it forms a
useful 'departure point' for the assessment of experimental results and the
development of more realistic predictive procedures for the fine sand.

In this chapter the general significance of the parameter A, is discussed
in detail, together with the effect on the concentration profiles of varying
the constant dispersion coefficient. The existence and magnitude or otherwise
of a velocity-dependent hydrodynamic dispersion coefficient is then considered
using numerical and experimental data.

6.2 The General Significance of A,

The integral solution developed in Chapter 5 for a constant Dg involved
the specification of A at the point where g(A) = This was defined as A_.
Both g(A) and X, were deriyed from the numerical e(l} relationship. Use of
the transformatlon A = xt™% can be used to give valuable information about
the position of the solute front without any restriction having to be placed
on the general nature of Dg as assumed in the earlier analysis.

As previously,

a(chd)
ot

_ @ ac ]
= 5}'[De(e,v) 5;] Ty [qc] 6.1

1
e

If the transformation A = xt™2 is applied to equation 6.1, then

4 dey , g(A) de
o D) Gl + =5~ 3¢ = 0 6.2

If it is assumed that D,(6,v) = 0, inferring piston-like sclute movement, then

2t = 0 6.3

and since dc/dh = 0, the equality g(A) = 0 must hold. Hence the sharp solute
front must occur at A,

If Do (B,v) = 0, 1t is necessary to assess the relationship between some
recognlsable position on a c(A) profile such as the point of maximum slope
(the point of contraflexure} and A,. Assume that a particular c¢(x,t) curve
has been transformed to a A scale and, due to Dy (8,v) effects, the point of
contraflexure is positioned at a X value other than A,, as shown in Fig 6.1.
Point A (Fig 6.1) now represents the position on c()A} where the ordinate is
A, and hence g(A) = At point A then,

d de -
a—[n (9, )d)\} = 0 6.4

For the left hand side of equation 6.2 to be zero, [Dg {8~vﬁ~a{ﬂ must be
a maximum at point A. Numerical results indicate that’fbf a giﬁen\e(x\t)
; 2?“




Fig 6.1 Normalized concentration profile used in showing the
coincidence of point A and the peint of contraflexure




curve, De(8,V) is sensibly constant across the solute front and hence the max-
jmum of the product will be governed by the maximum of dc/dx (Watson and Jones
1981a). Since dc/dA is a maximum at the point of contraflexure, it can be con-
cluded that, to a very close approximation, point A and the point of contra-
flexure are coincident.

1f the 'mean' position of a solute front is defined in terms of the point
of contraflexure, its location can be safely assumed to be at A, for constant
concentration horizontal absorption, and this location is dependent upon the
soil water system only. The above applies also for constant concentration
vertical infiltration at early times, when the gravity effect is very small.

6.3 The Significance of the Hydrodynamic Dispersion Coefficient

The alternativg integral scheme of Chapter 5 was used with values of
A, = 3.96 x 1073ms ™%, tan ay = 0.302 and tan oy, = 0.316 as before to calculate
the normalized solute concentration (C) for a range of constant P, values.
Fig 6.2 gives the resulting €(}) profiles, using a large X scale for clarity.
The profile for Dg = 1078 m?s”! is included because it coincides closely with
the experimental data which is plotted in Fig 6.3. The 'mean' T()\) profile
for the experimental results (full line in Fig 6.3)lshows that at 4 € value
of 0.5 the corresponding A value is 4.07 x 107% ms™%. This compares with the
value of 3.96 x 107% ms™% used in the quasi-analytical and numerical work, and
determined from the 6(A) relationship of Fig 6.3 (dashed line). This in turn
was obtained by transforming the 8(x,t) data of the numerical simulation. The
comparison between the experimental data points and numerical €(A) curve of
Fig 6.3 is good, with the main differences occurring where the curve 'steepens'
as 8 » 8. This variation leads to a slightly smaller X, value when calculat-
ed from the dashed curve compared with the value given by the experimental
data. This is consistent with the values given above.

To enable comparisons to be made between the 'shape! of the experimental
data and the theoretical and numerical predictions, the experimental c(A)
curve of Fig 6.3 Wa§ horizontally transposed so that at € = 0.5 the A value
was 3.96 x 10~3 ms™%. The comparison is given in Fig 6.4 and reveals excel-
lent agreement between experimental, numerical and theoretical results for a
constant D, of 107° m?s~}. Certainly the value of Dg of 5 x 1071 m?s~?! which
Smiles et al (1978) found applicable to the sand-kaolinite mixture is not
applicable to the coarser Bungendore fine sand.

6.4 The Velocity Dependence of the Dispersion Coefficient

Although Fig 6.4 shows that the T(A)} result for Dg = 107% m?s~! matches
the mean experimental curve well, it cannot necessarily be concluded from this
that the hydrodynamic dispersion coefficient is velocity independent.

The hydrodynamic dispersion coefficient may be represented as

De = Dp+ B|v] 6.5

where the dependence of D (0,v) on 8 and v is now effected solely through the
pore water velocity. In this study, the constant term D was taken to be

5 x 101 p2s-1, The value of the parameter B was chosen so that the numerical
results would match as closely as possible the experimental data and hence the
theoretical &(\) curve for Dg = 10°% m?s-!. As the inclusion of the velocity
dependence in Dy invalidates the similarity solution for €, it was necessary
to determine R from a data match at a specified time. This was taken at

t = 1220 s which was the termination time of the first experiment. Using the
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yalue of B so obtained {0.0001m) the numerical results for (A} for times
of 2500 s and 7225s were determined. These results, together with those
for t = 12205 are plotted in Fig 6.5. The €(A) curve for Dg = 107° m?s™!
i1s also included. The match at t = 1220s is good. The effect of the velocity-
dependent Deg on solute movement is shown as the gradual steepening of ¢(A)} with
time. This follows logically since as v decreases with time, Dg(0,v) also
decreases with time which, on transformation, results in the steeper g(A) re-
lationship. Prior to transformation however, the &(x} relationship would be
mpch 'flatter' (ie more dispersed) at 7225s compared with 1220 s since the
¢% ratio is approximately 85:35.
Superimposed on Fig 6.5 are two dashed lines which represent the limits,
after transformation, of the E(A) experimental data points given-in Fig 6.3.
These limits are spaced approximately 0.1 x 1072 ms™Z on either side of the
mean experimental data curve. Clearly, for the time range considered, the
experimental scatter is larger than the spread of the &(A) curves caused by
the velocity-dependent effect. This suggests that the experimental data to
hand is not sufficiently semsitive to allow the existence and magnitude (or
otherwise) of a velocity-dependent effect in Dg to be determined, and that
the use of an indirect non-destructive method rather than the destructive
sampling technique used is probably necessary for such a study.
The possibility of the hydrodynamic dispersion coefficient being velocity
dependent could also be considered by calculating the Péclet numbers {Pg) for
d Philip (1978) following Saffman (1959) and Pfannkuch

the system. Smiles an
{1963) suggest that the coefficient will be velocity independent for P, < 1.
This can be written as .

set |

AP | 6.6

28Dy,
where for Bungendore fine sand S (sorptivity) = 1.3 x 10~° ms-

& (characteristic length) = 107% m
6, = 0.34
= 1.9 x 107° m?s™!

D, (molecular diffusivity of KC& in solution)

on substitution, t 2 10 000 s approximately if Dg is to be velocity independ-
ent. This time exceeds the longest experimental run of 7320s.

The Péclet numbers were also calculated directly using numerical data for
the velocity estimates, and were 5.1, 2.9 and 2.0 for the times 400s, 1225s

and 2500 s respectively.
6.5 Conclusion

This part of the project has made us
perimental results for a fine sand in order to examine in detail solute move-
ment during horizontal absorption under constant concentration conditions.
The function g{}), which is obtained directly from 8(}) has linear character-
istics in the vicinity of A, (defined as the A value where g(A) = 0) which
enabled a simple integral solution to be used for calculating E()) profiles
under conditions of constant Dg (see Chapter 5).

For purely convective-type solute movement, A, defines t
the sharp solute front, whilst for constant Dg conditions it defines the
location of the point of contraflexure of the 2(A) profile. To a very close
approximation, A, locates the point of contraflexure for systems where the

hydrodynamic dispersion coefficient is of the form De{e,v).

e of theoretical, numerical and ex-

he position of
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The experimental data for the fine s
jcal analysis when a constant Dg V
s 20 times greater than the value of 5 x1

(1978) found suitable for a sand-kaolonite mixture. .
The numerical results for C(A) were tested against the theoretichl sol-
a constant D, of 107° m?s™! with excellent correspondence bking

gtion for

obtained. When the numerical approach was used to obtain &(A) profiles for a
dispersion coefficient of the form Dg{(8,V), similarity was no longer ﬁreserved.
However, the spread of the profiles for different times lay within a copnserv-
atively estimated bandwidth of the scatter of the experimental data. . Conse-
quently the experimental results for the Bungendore fine sand are not! able to
be used definitively to prove either the existence or otherwise of velocity-
dependence effects. However, the magnitude of the constant De parameter re-
quired to achieve correspondence with the experimental data and the large
values of the Péclet numbers for the system, particularly at early times,
suggest that the hydrodynamic dispersion coefficient is indeed velocity de-
pendent. Experimental verification of the magnitude of the effect pnder
constant concentration conditions seems to require the use of more.sophistic-

ated equipment.

theoret
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SOLUTE MOVEMENT DURING CONSTANT ELUX ABSORPTION
7.1 Introduction

The predictive behaviour of the numerical solution is tested further in
this chapter using experimental data on solute movement in Bungendore fine
sand under constant flux absorption. The experiments were again carried out
by the staff of the C.$.I.R.0. Division of Environmental Mechanics. Smiles
et al. (1981) have reported on the work and their paper should be consulted
for discussion of the experimental details. Although the same data has been
used in this chapter and in Smiles et al (1981) the interpretation of the
experimental results does differ, particularly in relation to the velocity
dependence of the dispersion coefficient.

7.2 Experimental Data

If vy is the soil water flux at x = 0 it is possible (White et al, 1979)
to describe constant flux absorption in a convenient manner using reduced
variables T and X defined as

)
) 7.1
)

For a given T value White et al. {1979) showed' from theoretical grounds that
the X(8) curve would be unique. The numerical analysis of soil water move-
ment has been tested against this requirement using a wide range of Vo values
with a unique X(8) relationship always being obtained for any given T value.

In the experimental work three T values were chosen, these bein 10'9mzs‘ﬂ
? g

5.4 x 107°m*s™! and 3.98 x 10 7m2s-!. For each T value experiments using sev-
eral v, values were carried out and these are listed in Table 7.1.

Table 7.1 Summary of constant flux absorption and dispersion experiments
T (m2s™1) v, (ms™1) t {s)
1.00 x 1078 3.28 x 10-7 9.348 x 10"
4.38 x 107 5.232 x 10*
6.57 x 107 2.322 x 10
8.75 x 10™7 1.308 x 10
5.40 x 10~8 8.75 x 10-7 7.050 x 10%
1.31 x 10-° 3.132 x 10
1.75 x 1078 1.758 x 10%
3.28 x 10-° 5.010 x 10%
3.98 x 10~7 3.94 x 10~ 2.556 x 10%
5.25 x 10™° 1.440 x 10*
7.88 x 10-°% 6.420 x 103
1.05 x 10-3 3.600 x 10%

Most experiments were duplicated .and for each experiment the normal slicing
technique was used to obtain samples for determining the 8 and c profiles,
The initial 8 value approximated 0.10 m3m"3 in each case and the uniform
initial concentration of KC¢ was 1000 meq/litre. The solute concentration
of the absorbing solution was 100 meq/litre. The experimental data in the
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sorm 8(X) and ¢(X) is given for the T values in question in Figs 7.1, 7.2

and¢ 7.3. In each figure the dashed line through the 8(X)} data points rep-
resents the relationship as predicted by the constant flux numerical analysis
using the h(8) and X(8) curves of Fig 5.3. However, the continuous line in
the &(X) set in each figure, as with the constant concentration data, rep-
resents a 'mean' curve drawn through the experimental values.

7.5 Discussion
For a given T value, Smiles et al. (1981) showed that if the hydrodynamic

dispersion coefficient was assumed to be velocity independent, then a umique
g(X) relationship would result regardless of the v, value used. It was con-
sidered that the 'collapse' of the £(X) data given in Figs 7.1, 7.2 and 7.3
was sufficiently definitive for velocity independence to be indicated. The
hydrodynamic dispersion coefficient would thus consist only of the molecular

diffusion component which can be expressed as

where Dy is the diffusion coefficient for KC& in water (1.9 x 10-°m?s~ 1} and
g, is the 8 value at X, where X, is defined as the value of X when

]
6X = J Xd8 7.3
On

The 5, values for T values of 107°%, 5.4 x 107% and 3.98 x 10""m*s™! are res-
pectively 0.1868, 0.2231 and 0.2833 m®m~* giving D;, values of 3.5 x 1071,
4.3 x 107 and 5.4 x 107%n%s~?., When these values were used by Smiles et
al (1981) in an approximate analytical expression for comstant D, To obtain
E(X) profiles the match with the experimental data seemed satisfactory. How-
ever, as will be detailed below, on the basis of this study and with the
benefit of the numerical solutions, it seems that the experimental data sup-
ports the concept of the velocity dependence of the dispersion coefficient
rather than velocity independence. It follows that if Dy is velocity depend-
ent then a separate &(X) profile is obtained for each v, value used, In this
regard a detailed study of the experimental data in the solute front region
indicates, in some instances, a trend in the pesitioning of the data points
within the group which is consistent with the relative magnitude of the v,
value. The discussion which follows considers the determination of the con-
stant D value giving the best match with the mean curve through the experi-
mental points, the calculation of &(X) profiles assuming velocity dependence
using 2 f value of 0.000lr and an assessment of the validity of the velocity-
dependent assumption by comparing the spread of the £(X) profiles for differ-
ent v, values with the bandwidth of the scatter of the experimental data- in
the solute front region.

In this study the effect on &(X) profiles of the velocity dependence in
D, increases as T increases due to the increasing v, values {see Table 7.1);
accordingly, the data for T = 3.98 x 10~"m?*s~! will be analysed first. Fig
7.4 gives to an enlarged scale the mean curve throu§h the experimental data
and the £(X) profile for a constant Dy of 30 x 10~ ¥ n?s-t, Also included in
the figure is &(X) for the Dg value of 5.4 x 107 n?s~? as used by Smiles et
al. (1981). The comparison hetween the mean experimental curve and that for
Dg of 30 x 107%m®s™! is good; however, the curve for Dg of 5.4 x 10~ n?s™ !
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oorly with the other two curves. The £(X) relationship for Dy of
5.4 X 1671 32s-! has also been included in Fig 7.3 to indicate its location
with regard to the experimental data; it is clear that it represents a
pounding curve to the data rather than a mean curve.

The mean curve is reproduced in Fig 7.5 together with the numerically-
determined £(X) profiles for the smallest (3.94 x 10~®ms-!) and largest
(1.05 x 105ms~ ') of the v, values iisted in Table 7.1 for T= 3.98 x 10~"m?s

The dispersion coefficient was represented by the same equation as used pre-

viously namely

agrees P
-1

Dg = Dy + Blivl 7.4

B = 0.0001 m.

1.05 x 10"5ms~! matches the mean experimental
curve closely whilst that for vo = 3.94 x 107°ms™! lies well within the band-
width of the experimental scatter as shown in the figure. If Dg is determined
by equation 7.4 using, for the pore water velocity, the value at X, then the
magnitude of De is 36.8 x 1070 m2s~} (ie 5.4 x 107'° + 31.4 x 10-1%) for
vo = 1.05 x 105 me-1 and 17.1 x 10-° m2s-! (ie 5.4 x 107 + 11.7 x 107'°)
for v, = 3.94 X 10~5ms-!. These results lend strong support to the conclusion
that D, is velocity dependent for the higher pore water velocity values during
constant flux absorption in Bungendore fine sand. If the characteristic
length (%) for the sand is taken to be 10~%m then the Péclet numbei for the
case when vg is 1.05 x 10-%ms~! is 1.7. This further strengthens the con-
clusion regarding velocity dependence. 1t should be noted that a much smaller
vy value could be used for the same T value with the simulation being carried
out for a much longer time and over a much longer column length. The mechan-
ical dispersion component of D would then be considerably reduced and, if vo
were very small, the molecular diffusion component would become dominant.

For T = 5.4 x 10~%m?s-! the best match with the mean experimental curve
assuming Dg to be constant is obtained using a value of 8 x 10~ m?*s-!, These
curves are shown in Fig 7.6. The experimental data requires slight horizontal
transpesition since for € = 0.50 the value of X for the experimental curve is
2.22 m?s~! compared with 2.23 m?s™! for the numerical output. The constant Dg
value of 8 x 10 m?s~! is again larger than the 8,Dy value of 4.3x1070 m?s™
applicable to this case. The E(X) curve for this value is also shown in Fig
7.6. Following the previous case, Fig 7.7 reproduces the mean curve and also
gives (X} profiles for the vy bounding values (see Table 7.1) of
3.28 x 10-°ms-! and 8.27 x 10~ 7ms~!. This latter curve matches the mean data
curve very satisfactorily. The curve for vy = 3.28 x 10~%ms~! extends beyond
the bandwidth of the data scatter for ¢ < 0.2 and ¢ > 0.8, However, as Fig 7.2
indicates, in the vicinity of € = 0 and € = 1.0 the scatter of the experiment-
al data is much greater than in the central region and, accordingly, it can
be concluded that T(X) for vg = 3.28 x 106 ms~! is generally consistent with
the experimental data. The Dg values at X, for T = 5.4 x 10~8m?s~?} are
16.0 x 10"9 m2s~! (ie 4,3 x 10710 + 11.7 x 107%) for v, = 3.28 x 10-8ms™!
and 7.4 x 10~ (ie 4.3 x 107*° + 3.1 x 107) for vo = 8.75 x 107ms~!. In
the latter case the mechanical dispersion component of the coefficient is
less than the molecular diffusion component.

The experimental v, values for the smallest T value of 10~%m?s™! range
from 8.75 x 10-7ms-! to 3.28 x 10~"ms~! with a resultant decrease in the mech-
anical dispersion component of Dg. The mean experimental curve was well
matched when a constant Dg value of 5 x 107" m®s~! was used. A graphical
comparison of these profiles has not been presented. Fig 7.8 gives ¢(X)

with Dp = 5.4 x 10" n%s~! and
e &(X) profile for vy =
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rofiles for the constant 0,Dp value of 3.5 x 10-1? m®s~! and for the Dg

values using the above vq values. Also included is the mean curve throughr

the experimental data transposed horizontally at g = 0.50 from 0.50x107 mZs™!
to 0.512 x 10~7 w?s~}, As previously, the T(X) profiles calculated using the
velocity dependent Dy values lie within the bandwidth of the scatter. The De
yalues at X, are respectively 7.4 x 10~ n2s"1 (ie 3.5 x 101 + 3.9 x 107'%)
and 5.0 x 107m?s™? (ie 3.5 x 10-% + 1.5 x 10-'°). Although, for this lat-

ter case, the mechanical dispersion component is very small it is apparent
from Fig 7.8 that the use of a velocity dependent D, with a g value of 0.0001
in no way gives results which are inconsistent with the experimental data.
For those cases where the mechanical dispersion is the dominant factor
in the solute movement process Watson and Jones (1981b) have detailed an ap-
proximate analytical solution which agrees well with the numerical results.

7.4 Conclusion
ons between the numerical predictions and experimental

results in this and the previous chapter indicate the consistency of the num-
erical analysis in representing accurately hydrodynamic dispersion during
absorption in Bungendore fine cand. In addition, it is apparent that the
assumption of a constant Dg value equal to 6Dy underestimates the dispersion.
However, the specification of a velocity dependent D with a B value of 0.0001m
represents the experimental data satisfactorily with the €(X) profiles for the
range of vg values used lying within the limits of the scatter of the experi-

mental data.

The comparis

i




8 SOLUTE MOVEMENT DURING INFILTRATION AND REDISTRIBUTION
8.1 Introduction

The numerical model for non-reactive solute transport as presented in
Chapter 3 has been subjected to a comprehensive testing program using experi.
mental and quasi-analytical results for both constant concentration and con-
stant flux absorption., This chapter extends the study to vertical flow
systems involving both infiltration and redistribution processes. Since the
solute model as presented utilizes only the flux and water content data from
the soil water analysis in dits solution, it can be applied without modific-
ation to the vertical flow conditions.

The physical validity of the soil water analysis mmder hysteretic con-
ditions hes already been discussed in section 2.4, Solute movement during
infiltration and redistribution is now considered, and compared with experi-
mental data provided by the €.S.1.R.0. Division of Environmental Mechanics.

8.2 Hysteresis Data for Bungendore Fine Sand

Comprehensive hysteresis data for the Bungendore fine sand sample used
in the experimental program is not available. To enable comparisons to be
made between the numerical results and a single infiltration-redistribution
experimental sequence, the data of Talsma (1874) on Bungendore fine sand was
used as the basis for developing a set of primary draining scanning curves
for use with the interpolative hysteresis model. These are shown in Fig 8.1.

8.3 Solute Movement During Vertical Infiltration

A vertical colum of Bungendore fine sand was set vup with a uniform
initial water content of approximately 0.10 m*n~? and a uniform initial con-
centration of KC& of 1000 meq/litre. A dilute KCY solution of concentration
100 meq/litre was supplied at the surface at a constant rate of 1,05 x 10 %mg!
for 3600s. Fig 8.2 shows the resultant experimental water content profile at
the end of the infiltration period, and Rig 8.3 the normalized solute concen-
tration profile. In both figures the continuous lines represent the results
of the numerical analysis and the points denoted 'I' represent the experi-
mental data.

Agreement between the numerical and experimental results is very good
for both the water and solute profiles. Egqually satisfactory correspondence
was found for infiltration involving both a smaller constant surface flux of
5.25 x 10°ms~! and a constant concentration (surface ponding) boundary con-
dition. The comparisons have not been included in this report,

8.4 Approximate Analytical Solution

An approximate analytical solution for a constant flux of water and a
constant concentration of solute during vertical infiltration has heen pre-
sented by Watson and Jones (1981p).

A parameter g, is defined as

e .
g, = 0z - J 2d8 8.1

On

with B, being the water content at z where g, = 0. It then follows that
Zg g * A

3T 2T @B .
I = R e - A 8.2

.40
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subject to

where 8. = B/6
Zs

The solutions take the form

& = 1-Yerfc[-Z %% Z*/] 8.4
2(Qyz,)"
and g = 1- I/aerfc[——g—:ﬁ—] 8.5

2(Dpt + Ryz,) "

HEquation 8.5 is tested using the data from the previous section, namely:

=
1

-5 _ -1
o 1.05 x 10 nms Dp

5.0 x 107 1%pm%st

(a3
It

it

3600 s B 0.0001 m

From the numerical simulation z, and 6,, were found to be 0.133m and
0.267 m’m~®. The comtinuous line in Fig 8.4 represents the numerical sol-
ution at t = 36005 and the circled dots are selected values using equation
8.5. The agreement is very satisfactory.

8.5 Solute Movement During Vertical Redistribution

The experiment described earlier in section 8.3 was extended to study
the disposition of solute during the redistribution phase. The experiment-
ally determined water contemt and solute concentration profiles for three
redistribution times are shown in Fig 8.2 and Fig 8.3, The experimental
data is represented by numerals, with '1! representing 6000s, '2' represent-
ing 12 080s and '4’ representing 24 000 s of redistribution respectively.

The hysteresis data of Fig 8.1 appears to describe the characteristics
of the Bungendore fine sand satisfactorily; in particular the 8(z) compari-
sons of Fig 8.2 are reasonable. Unfortunately difficulties were experienced
during this part of the experimental program. The supply of sand required
replenishing and the new supply seems to have had slightly different soil water.
characteristics. This change occurred with the sand used. in the 6000 s and
24 000's redistribution experiments, and would. account for the greater dis-
crepancies between. the mmerical results and experimental data at tliese times.
The general trend is. however consistent. It should be noted. that the numer-
ical program only uses the soil characteristics determined from the original
sand sample. Dp was taken to be 5x107'"n’s-! and 8=0.0001n throughout.

The corresponding solute profiles during redistribution are also shown
in Fig 8.3. Although the paucity of experimental data. does not allow any
definitive statements to be made concerning solute redistribution, there is
general consistency. The comparisons for redistribution times of 6000 s and
12 000 s are more variable that at 24 000 s 3 however, the discrepancies are
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consistent with the variations in the water content profiles at these inter-
mediate times, and doubtless reflect the variation in soil properties dis-
cussed above.

The numerical model has been programmed to provide additional data on
the transport processes involved. Figure 8.5 gives the solute mass profiles
for infiltration-redistribution in Bungendore fine sand corresponding to the
end of infiltration, and to 6000s, 12 000s and 24000 s redistribution.
This figure is most instructive in indicating salt disposition within the
profile. Figure 8.6 provides the h(z) relationships and is included for
completeness.

8.6 Solute Movement During Horizontal Redistribution

The experiments described in sections 8.3 and 8.5 were repeated using a
horizontal column of Bungendore fine sand. The results are summarized in
Fig 8.7 to Fig 8.10.

The comparisons are presented for redistribution times of 12 000 s and
24 000 s using the notation described previously. Figure 8.7 shows marked
differences between the numerical and experimental water content profiles.
The reason for this is not apparent, and suggests the need for additional
experimentation.

The numerical and experimental solute concentration profiles for this
case are given in Fig 8.8, The comparison is reasonable, with the discrep-
ancies being consistent with those of the water content profiles of Fig 8.7
as discussed above.

8.7 Discussion

The problems experienced in obtaining the experimental data for the
redistribution studies and the lack of a well-defined experimental base for
determining the set of primary draining scanning curves (Fig 8.1) used in
the predictive analyses have produced comparisons which are less definitive
than those detailed in earlier chapters. In particular, it has not been
possible to amalyse accurately the significance of the velocity dependence
of the dispersion coefficient during the redistribution phase. However, the
overall consistency between the experimental and numerical results is good,
indicating that the numerical approach may be used with confidence in re-
distribution studies.

The data presented in this chapter also highlights some characteristic
differences between horizontal and vertical flow systems. At the end of
the vertical infiltration period, Fig 8.2 indicates that the infiltrated
water had penetrated 0.275m into the sand profile. The corresponding surface
water content was 0.288m®m-%. During horizontal absorption Fig 8.7 shows
that, for the same volume of water inflow, the penetration was 0.25m, with
a correspondingly higher water content of 0.319m’m~? at the absorbing face.
These differences reflect the influence of the gravity potential in the
vertical system. During redistribution the differences are more pronounced
and result in significantly different water content distributions. The vert-
ical profile drains more rapidly in the surface region whereas for the horiz-
ontal system the water content decreases gradually over most of the wetted
region, in a manner similar to that obtained with finer textured materials,

Figures 8.3 and 8.8 show the solute concentration profiles for the vert-
ical and horizontal systems. The differences become more evident on comparing
the corresponding solute mass profiles in Figs 8.5 and 8.9. The differences
reflect the effect of the larger pore water velocities present in the vertical
system in two ways. Firstly, the larger velocities result in greater convect-
ive transport, particularly during redistribution. Secondly, the dispersive
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SOLUTE MOVEMENT GURING INTERMITTENT INFILTRATION AND REDISTRIBUTION
9.1 Introduction

One of the principal aims of this project has been the development of a
numerical model capable of simulating solute movement under an intermittent
surface flux regime. On the basis of the results of the last chapter it is
evident that the explicit finite difference approach can model such a Systep
satisfactorily. As the final stage of this work, the model is used to study
the disposition of solute within a profile of sandy loam subjected to a
series of infiltration-redistribution sequences.

9.2 Results and Discussion

The soil material used in this chapter is Rubicon sandy -loam, the chay-
acteristics of which were described by Topp (1969). These are presented in
Fig 9.1 and Fig 9.2. The saturated hydraulic conductivity of the material
is 5 x 10°ms~ and its saturated water content is 0,38 m’m=%. A vertical
0.80m profile of the sandy loam is used in the analysis, with a uniform
initial water content of 0.164 m®m-3 containing a uniform concentration of
KC equivalent to 1000 meq/litre. The dispersion characteristics of Rubicon
sandy loam are mot available. A search of published experimental data indic-
ates that the mechanical dispersion parameter  would be of the order 10-%p,
The molecular diffusion coefficient Dj was chosen to be 6 x 10~ p2s~1; 4
grid spacing of 2mm is required to satisfy the Re stability constraint. 4
leaching regime applies, with a 0.1 N KC% solution (100 meq/litre) applied

under constant concentration conditions according to the time sequence of
Table 9.1.

Table 9.1 Time Sequence for Infiltration & Redistribution Events

Cycle Total Elapsed Event Time
Simulation Time Infilctration Redistriburion
1 900 s : 900 s
4500 s : 3600 s
29700 s 28800 s
2 30600 s 900 s
34200 s : 3600 s
59400 s 28800 s
3 60300 s . 9005 .
63500 s 3600 s
85100 s 28800 s

Although over 2200 water timesteps were used in the simulation, corres-
_ponding to some 2700 solute timesteps, profiles for nine elapsed times have
been chosen to illustrate the effects of intermittency of water application
on the distribution of water and solute in the soil profile. 'These times are
given in Table 9.1 and relate to the end of each infiltration period (900s
duration) and two profiles during the redistribution phase, namely at 3600s
and 28 800 s after the start of the event.

Figure 9.3 gives the §(z) profiles and shows that the wet front reached
a depth of 0.15m at the end of the first infiltration period. During the
first 3600 s redistribution the front had moved to 0.26m, and after 28 800 s
(corresponding to a total simulation time of 29700 s} the front had reached
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a depth of 0.56m. During the second cycle the front moved more slowly,
reaching 0.59m after 3600s and 0.65m after 28 800s of the second redistrip.
ution event. At time 89 100 s, the end of the third cycle, the wet front had
reached a depth of 0.70m,

Figure 9.4 contains the normalized solute concentration profiles at the
same times. It is clear from this figure that the changes in the €(2) profiles
during redistribution are small in comparison with the changes that take place
during infiltration. The gradual 'steepening' of the profiles, more pronounceq
during the latter part of the redistribution sequences, is the effect of the
hydrodynamic dispersion component of the mass transport equation. As the sol-
ution fluxes and hence the convective transport decreases, dispersion becomes
increasingly significant. Although Fig 9.4 represents the output from the
solution of the solute transport equation, it doesnot readily show the solute
mass distribution. This can be seen in Fig 9.5.

At the end of the first infiltration period, Fig 9.3 shows that the KC&
has been distributed in a 'bell' shape with a maximum of 311 meq/m® at a depth
of 0.076m. During the first redistribution period the mass peak is reduced to
212 meq/m® at a depth of 0.082m. The distribution is now distinctly skewed, g
result of increasing dispersion in the lower flux regions. Subsequent infil-
tration and redistribution sequences follow a similap trend, with bulk con-
vective movement dominating during infiltration, and dispersion during
redistribution. As the salt moves deeper into the soil profile the influence
of the infiltration period is less pronounced, with increasingly smaller mass
peaks and greater dispersion. :

Figure 9.6 gives the h(z) profiles and completes the range of output from
the program, These are the direct results from the solution of the water
flow equation of Chapter 2. The maintenance of a constant soil water pressure
head at the boundary z=-0.80m results in pressure head changes above the
boundary, and is thus not strictly modelling a semi-infinite colwmmn. However,
from Fig 9.1 it is clear that no water content changes occur in the lower
0.10m of the profile. This is a consequence of the shape of the h(8) curve
in the region of interest.

9.3 Significance of Hysteresis on Solute Movement

The numerical analysis presented in the previous section was repeated
ignoring the hysteresis data. The boundary wetting curve was used as the
hydrologic parameter h(B) for both infiltration and redistribution.

The results presented in Fig 9.7 to Fig 9.10 correspond to the end of
each 900 s infiltration event, and the end of each 28 800 s redistribution
event. The intermediate profiles at redistribution times of 3600 s have been
omitted for clarity.

The water content profiles of Fig 9.3 vary considerably from those of
Fig 9.7. The absence of hysteresis effects results in quicker and more com-
plete drainage, with the shapes of the profiles showing distinct differences.

The effect of the absence of hysteresis on solute disposition in the
profile is appreciable. The concentration profiles of Fig 9.8 indicate an
increase in both convection and dispersion of solute during redistribution
compared with the corresponding profiles in Fig 9.4, This is a direct result
of the higher pore water velocities and consequently higher mechanical dis-
persion coefficients for the case using the non-hysteretic data. The solute
mass profiles (Fig 9.4 and Fig 9.9) show clearly the differences in salt move-
ment, and indicate the development of a different leaching pattern.

A detailed study of the significance of hysteresis on solute movement
is beyond the scope of this report. From the results of the comparisons above,
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steretic nature

it is clear that caution must be exercised in omitting the hy
For Rubicon

of the h{8) data when considering redistribution processes.

sandy loam, hysteresis has a significant effect on both water and solute
disposition during intermittent infiltration and redistributiomn.
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with regard to both the development of the research material and the
and conclusions derived from such material,
of the more significant results.
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SUMMARY OF RESHLTS
Throughout this report, each chapter has been relatively self-containeq

results
This chapter provides a Summary

An explicit finite difference model for non-reactive solute transport

in unsaturated porous materials under unsteady-state conditions is
successfully developed using an established implicit finite difference
model for the soil-water phase. The water and solute equations are
solved simultaneously with the results being presented in terms of s0il-
water pressure, soil-water content, solute concentration and solute mass,

The numerical soil-water model is unconditionally stable. However, the
numerical solute transport model is only conditionally stable. A stab-
ility analysis is presented which indicates that limitations on the mag-
nitude of both the timestep and the space Step are required for a stable
and convergent numerical solution. These limitations are exacting when
the solute movement is dominated by convection preocesses.

A quasi-analytical solution is presented for non-reactive solute trans.
port during unsteady horizontal absorption under constant concentration
boundary conditions and a constant hydrodynamic dispersion coefficient,
This is used to assess the performance of the numerical model. Excellent
correspondence is achieved between the analytical and numerical results,

indicating that the numerical approach is both accurate and generally
stable.

A detailed study of solute movement during unsteady horizontal absorption
under constant concentration boundary conditions is presented for
Bungendore fine sand. The comparisons between theoretical, numerical
and experimental results are very good. The significance of the para-
meter A, is discussed and solute concentration profiles studied for a
range of constant-valued dispersion coefficients.

Numerical and experimental results are compared to assess the existence
and magnitude of the velocity dependence of the dispersion coefficient,
The dispersion coefficient for Bungendore fine sand is shown to be vel-
ocity dependent, and well described using a value for B of 0.0001m.

The predictive behaviour of the numerical model is tested using experi-
mental data for solute movement during constant fiux absorption. The
numerical model accurately represents  the solute movement. The dispersion

coefficient for Bungendore fine sand is again shown to be velocity depend-
ent,

An approximate analytical solution for solute movement during constant
flux infiltration is presented. Good agreement is found between the
analytical and numerical results when the mechanical dispersion component
of the hydrodynamic dispersion coefficient is dominant,

.The numerical model is used to study redistribution following both horiz-

ontal absorption and vertical infiltration. The model adequately simu-
lates the experimental resuits. Difficulties experienced with the
experimental work and the lack of definitive hysteresis data for the
Bungendore fine sand produced results which are less satisfactory than
the constant concentration and constant flux absorption results. It is




therefore not possible to analyse accurately the significance of the
velocity dependence of the dispersion coefficient during redistribution.
Further experimental work on this aspect is necessary.

The potential of the numerical model for simulating solute movement
snder intermittent water application is considered by studying the dis-
position of solute in a profile of Rubicon sandy loam under three
snfiltration-redistribution sequences. The solute mass profiles are
particularly useful in assessing solute movement.

The significance of neglecting soil-water hysteresis in modelling solute
movement during redistribution is studied briefly. From this work it
appears that the shapes of the solute profiles are sensitive to the h(9)
data used, suggesting that physically realistic data should be used
wherever possible.
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APPENDIX A
ANNOTATED BIBLIOGRAPHY OF SOLUTE MOVEMENT

Al-Niami, A.N.S. & Rushten, K.R. (1979), Dispersion in stratified porous
media: analytical solutions, Water Resour. Res., 15, 1044-48.
Analytical solutions are presented for dispersion in stratified
porous media under saturated, steady flow conditions, aliowing for
interaction between layers. Flow parallel to the stratifications
and flow perpendicular to the interfaces are considered.

Balasubramanian, V., Ahuja, L.R., Kanehiro, Y. § Green, R.E. (1976},
Movement of water and nitrate in an unsaturated aggregated soil
during nonsteady-infiltration - a simplified solution for solute
flow, Soil Sei., 122, 245-55.

Experimental studies of water and nitrate movement in unsaturated,
highly aggregated soil under unsteady flow conditions, with differ-
ent initial water content. A simplified analytical solution is
presented for a slug of solute under a constant surface concentrat-
ion flow condition.

Basak, P. & Murty, V.V.N. (1977), Nonlinear diffusion applied to ground-
water contamination problems, J. Hydrology, 35, 357-363.
An analytical solution for the concentration dependent diffusion of
nonreactive solute under stationary, saturated water conditions with
increasing solute concentration at the source.

Basak, P. § Murty, V.V.N. (1978), Concentration-dependent diffusion
applied to groundwater contamination problems, J. Hydrology, 37,
333-337.

&n analytical solution for the concentration-dependent diffusion
equation with decreasing contaminant concentration at the source.
Solute is non reactive, and saturated, steady-state conditions pre-
vail,

Batu, V. § Gardner, W.R. (1978), Steady-state solute convection in iwo

dimensions with nonuniform infiltration, Soil Sei. Soec. Am. J., 42,
18-22.
The unsaturated, steady-state soil-water equation is solved analyt-
ically for two dimensional flow conditioms. The resulting flow net-
work, described by streamlines, travel times and isochrones is used
to predict the movement of solutes, assuming a convective transport
mechanism. The effect of surface variations in infiltration on the
pattern of solute tramsport is discussed.

Beese, F. § Wierenga, P.J. (1980), Solute transport through soil with
adsorption and root water uptake computed with a transient and a
constant-flux model, Soitl Sei., 129, 245-52.

A comparison of two numerical models simulating reactive solute
transport during a sequence of infiltration-redistribution cycles.
One model assumes steady water flow, the other unsteady flow, and

in each the water and solute flow equations are solved simultaneously
using explicit finite difference (CSMP) models. Adsorption and root
water uptake {a sink} are included, and their significance studied.

Besbes, M., Ledoux, E. § de Marsily, G. (1976), Modelling of the salt
transport in multilayered aquifers, System Simulation in Water
Resources, ed. G.C., Vansteenkiste, North Holland, 229-245.
Following a brief discussion on the theory of solute transport inm
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10.

11,

12,

13.

saturated, unsteady flow conditions, a simplification is made for
multilayered aquifers and the model applied to two field problems,

Biggar, J.W., § Nielsen, D.R. (1960), Diffusion effects in miscible dis-

placement occurring in saturated and unsaturated porous materials,
J. Geophys. Res., 65, 2887-95.

An experimental study of miscible displacement in porous media undey
saturated and unsaturated steady flow conditions for various average
flow velocities. Effluent concentration curves. are compared, and
variations due to soil type and flow conditions highlighted.

Biggar, J.W. § Nielsen, D.R. (1962), Miscible displacement. II. Behaviour

of tracers, Soil Sci. Soe. Proc., 28, 125-28.

An experimental study of the effect of average flow velocity, initia]
water content and soil type on the spreading of an initially sharp
front of a solute (tracer) moving under steady-state flow conditions,
Solute distribution as measured in the effluent is explained in terms

of the relative effects of pore geometry, diffusion rates, adsorption
and exchange.

Biggar, J.W. § Nielsen, D.R. (1963), Miscible displacement. V. Exchange

processes, Soil Sei. Soc. Proc., 27, 623-627.

Three mathematical models describing reactive solute transport are
compared with experimental results for horizontal, steady-state
flow in a sand. Saturated and unsaturated conditions are included,
for a range of flow velocities.

Biggar, J.W. § Nielsen, D.R. (1967}, Miscible displacement and leaching

phenomenon, Irrigation of Agricultural Lands, ed. Hagan et al, Amer,
Soc. Agron., 254-274.

A classic review of miscible displacement phenomena in porous media.
Experimental breakthrough curves for both reactive and non-reactive
solutes under saturated and unsaturated steady flow conditions and
for a range of porous media are compared and discussed. Several
theoretical models of dispersion are critically presented, and
introductory comments made concerning leaching phenomena. Suggest-
ions are given for future investigations.

Boast, C.W. (1973), Modelling the movement of chemicals in soils by water,

Sotl Sei., 115, 224-230.

A brief review of classical macroscopic continuum theories for des-
cribing movement of sclutes through soil. Equations describing
different mechanisms for solute movement are combined to form a
general flow model. Component models are described, but initial

and boundary conditions and solutions to the equations are not in-
cluded.

Bresler, E.(1967), A model for tracing salt distribution in the soil

profile and estimating the efficient combination of water quality
and quantity under varying field conditions, Soil Sei., 104, 227-
233.

A numerical model is presented for describing reactive solute move-
ment during infiltration of water. The model, based on the conserv-
ation of solute mass, computes the disposition of solute in the
profile following an infiltration event. Calculated results are
compared with data obtained from field studies. The model is used
to evaluate efficient combinations of quality and quantity of irrig-
ation water subject to a desired salinity distribution within a
field soil.

4.

15.

16.
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taneous flow of water and salt in unsaturated soils,
Am. Proc., 33, 827-83Z.
A numerical model is pres
water and nonreactive sO
unsaturated soils.
flow, and is based on the conservation of solute mass.
redistribution and evapora
putes the concentration pro
Comparisons between experimental

Bresler, E. (1973}, Simultaneous transp
transient unsaturated fiow conditions,

86.

Implicit finite di
solute flow are SO
state flow conditions. Numerical results are comp
ical solutions for steady water fiow,
field data for unsteady infiltration.
solute movement during infiltration, re

Bresler, E.

steady infiltration
39, 604-613.

A simultaneous solution
ing unsteady, unsaturate
alternating-dirvection-imp
hysteresis effects are ignored.
one using cartesian,
the radial co-ordinate model are presente

(1975}, Two-dimensional transport of

969), Numerical method for estimating simul-
Soil Sei. Soc.

ented for describing simultaneous flow of
jute during unsteady-state conditions in

The solute model only accounts for convective

infiltration,
tion are simulated by the model, which com-
file as a function of time and depth.

and numerical results are given.

ort of solutes and water undexr
Water Resour. Res., 9, 975-

£ference models for both water and nonreactive
1ved simultaneously for unsaturated, unsteady-

ared with analyt-
and with previously reported
The model is used to study
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solutes during non-
from a trickle source, Soil Sei. Soe. Am. Proc.,
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An experimental study to determine the effect of soil structure (ie
disturbed vs undisturbed) on solute movement.

20. Carbonell, R.G. (1979), Effect of Pore Distribution and flow segregation
on dispersion in porous media, Chem. Eng. Sei., 34, 1031-1039,
Equations are derived for the dispersion coefficient in laminar and
turbulent flow to study the effect of pore size distribution and
flow segregation on dispersion in porous media. Predictions using
this theory are compared with cumulative experimental data.

21. Chhatwal, S.S., Cox, R.L., Green, D.W. § Ghandi, B. (1973), Experimenta]
and mathematical modeling of liquid-liquid miscible displacement
in porous media, Water Resour. Res., 9, 1369-1377,
A comparison of numerical models used to solve the water-solute
equations in unsteady, saturated flow fields in both one and two
space dimensions. An improved implicit finite difference scheme
for solute transport is presented which significantly reduces the
numerical oscillations and numerical dispersion. Results are com-
pared with an analytical solution for one dimensional transport and
with experimental data for two dimensional transport.

22, Coats, K.H. § Smith, B.D. (1964), Dead-end pore volume and dispersion in
porous media, Soc, Pet. Eng. J., 4, 73-84.
A series of laboratory experiments on dispersion of nonreactive
solutes under saturated, steady-state flow conditions over a range
of materials and flow velocities are analysed using different math-
ematical models. The experimental and predicted results are compared
to test the physical validity of the existence of a stagnant volume

of soil-water. Note: see also the discussion and author's reply in
the same reference, 282-284,

23. Couchat, P.H., Brissaud, F. § Gayraud, J.P. (1980}, A study of strontium-
90 movement in a sandy soil, Soil Sei. Soe. Am, J., 44, 7-13.
The adsorption-desorption of St is investigated in saturated columms
of sandy soil under constant flux conditions, and kinetic and equil-
ibrium relations compared. A numerical model is used to both calcu-
late breakthrough curves using the experimentally determined
adsorption-desorption data, and to determine the necessary

adsorption-desorption relationship to ensure good experimental -
numerical comparisons.

24. Cushman, J.H. (1979), An analytical solution to solute transport near
root surfaces for low initial concentration I. Equations develop-
ment, Soil Sei. Soc. Am. ., 43, 1087-1090,
An analytical solution is developed for a non-dimensional form of
the governing partial differential equation for radial flow of solute

{(nutrient) in the root zone. Mass flow, diffusion and absorption -are
considered. Water flow is steady-state.

25. Cushman, J.H. {1979), An analytical solution to solute transport near root
surfaces for low initial concentration II. Applications, Soil Ses.
Soc. Am. J., 43, 1087-1095.
The analytical solution is used to study the influence of the root

size, absorption ability and transpiration rate on solute {nutrient)
distribution.

26. Dagan, G, & Bresler, E. (1979), Solute Dispersion in unsaturated hetero-

geneous soil at field scale T. Theory, Soil Sci. Soe. dm. J., 43,
461-467.
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27,

28,

29.

30.

31.

32.

Quasi-analytical solutions to non-reactive solute flow under vertic-
al, steady-state soil water flow in unsaturated, heterogenecus soil
are presented. Field heterogeneity is described in terms of the
statistical distribution of the hydraulic parameters, implying a
corresponding distribution of the solute concentration,

Pahiya, I.S., Singh, M., Singh, M. & Hajrasuliha, S. (1980), Simultaneous
transport of surface-applied salts and water through unsaturated
soils as affected by infiltration, redistribution and evaporation,
Soil Sei. Soc. Am. J., 44, 223-228.

Laboratory ,column studies on the effects of water application rate
and initial water content on the leaching of chloride salt. Com-

parisons are made between three soil types - sand, sandy loam and

clay.

pavidson, J.M., Baker, D.R. § Brusewitz, G.H. (1975), Simultaneous trans-
port of water and adsorbed solutes through soil under transient flow
conditions, Trans. ASCE, 18, 535-539.
Simultaneous solutions of finite difference approximations for water
(implicit) and reactive solute (explicit) under unsteady and steady
flow conditions are presented. Non-linear adsorption/desorption
relations are used, based on the Fruendlich equilibrium relationship.
Comparisons are made between the numerical and an analytical (steady-
state water flow) solution, and with experimental results for a con-
stant applied water flux. The model is used to study an infiltration/
redistribution/evaporation sequence for a slug of reactive solute.

Davidson, J.M., Brusewitz, G.H., Baker, D.R. § Wood, A.L. (1975), Use of
So0il Parameters for Describing Pesticide Movement Through Soils,
U.S. Environ. Protect. Agency EPA-660/2-75-009 Report R-800364.
Explicit finite difference models describing reactive solute trans-
port through unsaturated porous media are presented for both steady-
and unsteady-state water flow conditioms, and solved simultaneously
with the water flow equations. Experimental results from laboratory
and field studies are used te test the numerical solutions under in-
filtration conditions.

Day, P.R. § Forsythe, W.M. (1957}, Hydrodynamic dispersion of solutes in
the soil moisture stream, Soil Sei. Soc. #m. Proc., 21, 477-480.
Experimental study of solute dispersion under saturated, steady-
state water flow conditions. A statistical analysis is presented
to determine the amount of dispersion, and dispersion coefficients
and indicies are compared for a range of soil types.

De Smedt, F. § Wievenga, P.J. (1978}, Solute transport through soil with
nonuniform water content, Soil Sei. Soe. Am. J., 42, 7-10.
An approximate analytical solutiom is presented for steady leaching
of solute (salt) through soil with a nommiform water content. The
solution compares favourably with a mumerical solution, and the ap-
proximate analytical and the numerical solutions agree with an anal-
ytical solution for soils with a uniform water content distribution.

De Smedt, F. § Wierenga, P.J. (1978), Approximate analytical solution for
solute flow during infiltration and redistribution, Soil Sei. Soc.
Am. J., 42, 407-412. _

An approximate anmalytical solution is developed to describe non-

reactive solute flow in soil during infiltration and redistribution.




33.

34,

35.

36.

37.

38,

The solute dispersion coefficient is a 1inear function of pore water

velocity. Comparisons are made with a set of experimental results
and with numerical solutions.

be Smedt, F. § Wierenga, P.J. (1979), A generalised solution for solute
flow in soils with mobile and immobile water, Water Resour. Res.,
15, 1137-1141.
An approximate analytical solution is developed to describe non-
reactive solute flow in soil during steady-state leaching in one
dimension. The solution takes into account transfer into an im-
mobile water fraction, and is examined for different sets of bound-
ary conditions.

Elrick, D.E., Laryea, K.B. § Groenevelt, P.i, (1979}, Hydrodynamic
dispersion during infiltration of water into soil, Soil Sei. Soec.
Am, J., 43, 856-865.
A power series solution is developed for the dispersion of solute
during one dimensional infiltration and a (CSMP) computer program
presented to solve the resulting equations for water and solute
movement. The dispersion coefficient is assumed to be a function
of water content only. A comparison between experimental data and
theoretical predictions is given for a clay loam soil.

Fried, J.J. § Combarnous, M.A. (1971), Dispersion in porous media,
Advances in Hydroscience, 7, 169-282.
A comprehensive 'state of the art' which includes the historical
development of dispersion theory, descriptions of both dispersion
and diffusion processes and their significant parameters, conceptual
models, experimental studies, extensions to stratified and hetero-
geneous media, analytical and numerical methods to solve the dis-
persion equations, experimental techniques used in dispersion
studies, and a methodological approach for treating real problems.

Gaudet, J.P., Jégat, H., Vachaud, G. § Wierenga, P.J. (1977), Solute

transfer with exchange between mobile and stagnant water through
unsaturated sand, Soil Sei. Soc. Am. J., 41, 665-671.

An experimental and numerical study of non-reactive solute transport
through unsaturated sand under steady soil water flow conditions.
Solute is allowed to transfer between mobile and immobile soil water
phases. The numerical model uses an explicit finite difference
technique. Coefficients needed for simulation are obtained at dif-
ferent water contents by curve fitting observed and calculated con-
centrations at one depth.

Gelhar, L.W. § Collins, M.A. {1971), General analysis of longitudinal

dispersion in non uniform flow, Water Resour. Res., 7, 1511-1521.

An analytical method is proposed which allows evaluation of the
effects of flow non-uniformity and variable dispersion coefficients
on longitudinal dispersion in porous media. One-dimensional satur-
ated, steady-state flow conditions apply. The approximate analytical
solution is compared to a numerical solution of the exact equation.

Gershon, N.D, & Nir, A. (1969), Effects of boundary conditions of models

on tracer distribution in flow through porous mediums, Water Resour.

Res., 6, 830-39. :

A study of the influence of different initial and boundary conditions
on the distribution of a tracer in time and distance for several one-
dimensional systems. Saturated flow under steady and unsteady-state
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conditions, with hydrodynamic dispersion, diffusion, radio-active
decay and simple chemical interactions are all considered. Exact
and approximate analytical solutions are used.

39, Chuman, B.S. § Prihar, 5.5. (1980), Chloride displacement by water in
homogeneous columns of three soils, Soil Sei. Soc. Am. J., 44,
17-21.
Column laboratory experiments are used to study the effect of init-
ial soil wetness, amount and rate of surface water application and
redistrihution on the displacement of chloride in three soil types -
loamy sand, sandy loam, silt loam. Experimental results are com-
pared with the quasi-analytical solution (extended) of Warrick et

al (1971).

40. Chuman, B.S. § Prihar, $.S. (1980), Chloride displacement by water in
layered soil columns, Aust. J. Soil Res., 18, 207-14.
A study of solute displacement by water during infiltration and re-
distribution in two-layered, air-dry soil profiles. Various combin-
ations of loamy sand, sandy loam and silt loam soils are used, under
high and low rates of water application.

41. @las, T.K., Klute, A. & McWhorter, D.B. (1979), Dissolution and transport
of gypsum in soils TI. Theory, Soil Sci. Soc. Am. J., 43, 265-268.
A numerical model using the method of characteristics is developed
to describe the movement of gypsum in one dimension under saturated,
steady-state flow conditions. Results showing the effect’ of the
various model parameters on calculated concentration-time profiles

are presented.

4?2, Glas, T.X., Klute, A. & McWhorter, D.B. (1979}, Dissolution and transport
of gypsum in soils II. Experimental, Soil Sei. Soc. Am. J., 43,
268-273.
Experimental information on the dissolution of gypsum and transport
of dissolved species in a saturated soil water system under steady-
state flow conditions is compared with two mathematical models -
one based on equilibrium and the other on kinetic dissolution
principles. The dissolution process appeared to be kinetically
controlled and could mot be described by the solubility-product
relationship as assumed in. the equilibrium model.

43, Gray, W.G. § Pinder, G.F. (1976), An analysis of the numerical solution
of the transport equation, Water Resour. Res., 12, 547-555.
The relative merits of finite difference and finite element methods
for solving the one-dimensional convective-dispersive equation are
examined. An explanation for the commonly observed shortcomings in
each approach is presented. See also comment and author's reply in
the same journal, Vol. 13, 219-220 (1977).

44. Gupta, S.P. § Greenkorn, R.A. (1973), Dispersion during flow in porous
media with bilinear adsorption, Water Resour. Res., 9, 1357-1368.
An implicit finite difference model is presented for the transport
of reactive solutes in water saturated, steady-state flow fields,
where convection, diffusion, dispersion and bilinear adsorption are
considered. Solutions are presented for a range of variables cover-
ing practical values for one-dimensional flow, and compared with a

known analytical solution.




45. Gupta, S.P. & Greenkorn, R.A. {1974), Determination of dispersion and
nonlinear adsorption parameters for flow in porous media, Water
Resour., Res., 10, 839-846.
Different methods for calculating the dispersion coefficient from
experimental data are discussed. The dispersion-velocity data are
correlated using two dispersivity models and the influence of dif-
ferent proportions of clay studied. Two types of adsorption modeis
are used for fitting the static adsorption data. A method is then
presented to determine the adsorption parameters for dynamic experi-
ments.

46. Gupta, R.K., Millington, R.J. & Klute, A. (1973}, Hydrodynamic dispersion
in unsaturated porous media. I. Concentration distribution during
dispersion, J. Indtan Soe. Soil Sei., 21, 1-7.

An experimental study of non-reactive solute movement in an unsatur-
ated porous medium during steady-state water flow. Various combin-
ations of water content and pore water velocity are used, and the
resulting solute concentration profiles examined. A glass bead
media is used.

47. Gureghian, A.B., Ward, D.S. § Cleary, R.W. (1979), Simultaneous transport
of water and reacting solutes through multilayered soils under tran-
sient unsaturated flow conditions, J. Hydrology, 41, 253-278.
A one-dimensional unsteady-state implicit finite difference model
for the simultaneous flow of water and reactive solute through multi-
layered soil systems under unsaturated flow conditions is presented.
Infiltration, redistributicn and evaporation are considered. The
numerical solutions are compared with analytical and experimental
results for particular flow conditionms.

48. Hassan, F.A. § Ghaibeh, A.Sh. (1977), Evaporation and salt movement in
solls in the presence of water table, Soil Set. Soc. Am. dJ., 41,
470-478.

The emphasis in this paper is on water flow. Evaporation from hom-
ogeneous and stratified soil columns under steady-state flow con-
ditions and in the presence of a shallow water table is studied
experimentally and compared with a quasi-analytical solution. The
movement of salts imitially present in the soil during evaporation
above the water table is studied for different evaporation rates,
and the total dispersion coefficient calculated as a function of
pore water velocity.

49. Hornsby, A.G. § Davidson, J.M. (1973), Solution and adsorbed fluometuron
concentration distribution in a water-saturated soil: experimental
and predicted evaluation, Soil Sei. Soc. Am. Proc., 37, 823-828.
An experimental technique is described for measuring solution and
adsorbed phases of a reactive solute in a saturated soil column
under steady-state conditions. A numerical finite difference (CSMP)
model developed to describe the movement of a sorbing material
through a porous medium is evaluated in terms of the experimental
results for both high and low pore-water velocities.

50. Jomes, M.J. & Watson, K.K. (1980}, Solute movement in soil under an
intermittent water application regime, Hydrology & Water Resour.
Symp. Adelaide, 4-6 Nov., 1-5.
An explicit finite difference model for non-reactive solute transport
in unsaturated soils is solved simultaneously with an implicit finite
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difference model for water movement under one-dimensional unsteady
flow conditions. The significance of soil-water hysteresis and the
solute dispersion coefficient are studied for a sandy loam soil.

Jury, W.A., Gardner, W.R., Saffigna, P.G. § Tanner, C.B. (1976}, Model
for predicting simultaneous movement of nitrate and water through

a loamy sand, Soil Sei., 122, 36-43.

Numerical finite element model of dispersion, comvection, plant
uptake, nitrification and mineralisation - a water balance approach
for three soil zones between the surface and the water table. Prim-
arily'designed for use in field studies - non-uniform water flows,
heterogenity etc. Model predictions of nitrate movement are reason-

able in some cases only.

Kirda, C., Nielsen, D.R. § Biggar, J.W. (1973}, Simultaneous transport
of chloride and water during infiltration, Soil Sei. Soc. Am. FProc.,
37, 339-345.
A combined experimental and numerical study of non-reactive solute
transport during infiltration, for different initial soll water
content and water application rates and for solute either initially
present (leaching) or added at the surface. Non-destructive measur-
ing techniques are used for the experimental work, and the numerical
program simultaneously solves the water and solute movement equations
using finite difference techniques. The solute dispersion coeffic-
ient is assumed constant.

Kirda, C., Nielsen, D.R. § Biggar, J.W. {1974), The combined effects of
infiltration and redistribution on leaching, 8oil Sei., 117, 323-
330.
An experimental study of the transport of a non-reactive solute
{chloride) under infiltration and redistribution conditions. Nom-
destructive measurements are used, and the solute is either spread
on the surface or initially dispersed throughout the soil and leached
with 'pure' water. The effects of water application rate and initial
soil water content on solute tramnsport are observed.

Krupp, H.K., Biggar, J.W. & Nielsen, D.R. (1972}, Relative flow rates of
“salt and water in soil, Soil Sei. Soec. Am. Proc., 36, 412-417.
An analytical solution is presented to describe the mixing of two
miscible solutions in a porous media under saturated, steady-water
flow conditions. The model differentiates between mobile and im-
mobile soil water regions, and includes the effects of ion exclusion
on solute transport. The influence of pore water velocity and total
solution concentration is studied.” Predictions are compared with
experimental results.

Kurtz, L.T. & Melsted, S.W. (1973), Movement of chemicals in soils by
water, Soil Sei., 115, 231-239.

A general discussion paper with an emphasis on leaching and soil
development. Includes a review of laboratory studies using various
tracers, with discussion on their chemical interactions (ion ex-
change, adsorption). :

Lapidus, L. § Amundson, N.R. (1952), Mathematics of adsorption in beds. VIi.
The effect of longitudinal diffusion in ion exchange and chromato-
graphic colums, J. Physical Chem., 56, 984-988.

Analytical solutions are presented for transport of reactive sclutes
in saturated, steady-state water flow. Both equilibrium and first
order kinetic adsorption are considered.

89




Lawson, D.W. (1971}, Improvements in the finite difference solution of
two-dimensional dispersion problems, Water Resour. Res., 7, 721-725,
Two improvements are presented for the implicit finite difference
solution of solute transport in two dimensions in a steady, satur-
ated flow field.

58. Lehner, F.K. (1979), On the validity of Fick's law for transient diffus.
ion through a porous medium, Chem. Eng. Sei., 34, 821-825.
The method of spatial averaging is applied to derive a macroscopic
form of Fick's law for unsteady-diffusion through a saturated rigid
porous medium. The restrictions on the validity of this form are
determined.

59. Lin, S.H. (1977), Nonlinear adsorption in porous media with variable
porosity, J. Hydrology, 35, 235-243.
A numerical procedure is presented to allow the prediction of react-
ive solute dispersion and adsorption in heterogeneous porous media,
Different forms of porosity variation are used, and the resulting
simulations compared to determine the influence of porosity vari-
ation on solute concentration distribution. Comparison is also made
between an analytical solution and the numerical method.

60. Lin, S.H. (1977), Longitudinal dispersion in porous media with variable
porosity, J. Hydrology, 34, 13-19.
A procedure is presented to allow prediction of non-reactive solute
dispersion in porous media with variable porosity under steady-state
flow conditions. Results generated from an analytical solution us-
ing a constant average porosity provide the basis for assessment of
the effects of different porosity functions on the solute predict-
ions. The porosity variations are specified as a function of the
space co-ordinate and the resulting equations solved numerically
using an implicit finite difference technique.

61. Lindstrom, F.T., Haque, R., Freed, V.H. § Boersma, L. (1967), Theory on

the movement of some herbicides in soils, Enpiron. Sci. Technol., 1
561 - 565.

>

62. Lindstrom, F.T. (1976), Pulsed dispersion of trace chemical concentrations
in a saturated sorbing porous medium, Water Resour. Res., 12, 279-
238.
A rather simple yet complete mathematical model is presented for the
pulsed dispersion of reactive solutes in water saturated, steady-
state flow systems. The model includes the e¢ffects of convection,
dispersion, adsorption-desorption and first order decay. A typical
example is discussed with the aid of concentration distribution
curves.

63. Lindstrom, F.T. & Boersma, L. (1971), A theory on the mass transport of
previously distributed chemicals in a water-saturated sorbing porous
medium, Soil Sei., 111, 192-199,
Models developed to predict the mass transport of reactive solutes
in saturated, steady-state flow systems commonly represent the actual
pore size distribution by some average pore size. This paper prop-
oses that improvements can be obtained when the actual pore size
distribution is considered, and the existing theory is extended to
include pore size dependent diffusion coefficients.,
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Lindstrom, F.T. & Boersma, L. (1975), A theory of the mass transpori of

previously distributed chemicals in a water-saturated sorbing porous
medium: 4. Distributions, Soil Sei., 119, 411-420.

A quantitative analysis of the mass transport of reactive solutes

in a water saturated, steady-state flow field. Solutions are
presented for a pulse of solute in an initially solute free soil,
and then for leaching of the resulting distribution of solute by
water. Convection, dispersion and sorption are considered.

Lindstrom, F.T., Boersma, L. & Stockard, D. (1971), A theory omn the mass

transport of previously distributed chemicals in a water saturated
sorbing porous medium: isothermal cases, Soil Sei., 112, 291-300.
The theory previously presented is expanded by considering three
sorption models coupled with the convective-dispersive equation.
Hydrodynamic effects for a range of pore sizes are taken into ac-
count, and the theoretical results obtained with each sorption model
compared. See also experimental evaluation of the model in the same

journal, Vol. 118, 238-242 (1974).

Lucas, J.N. (1980}, The transport of a radioactive salt through a semi-

infinite column of porous medium: a physical model, Water Resour.
Res., 16, 387-390.

Laboratory column studies of the transport of radioactive salt
through saturated sand. Mathematical equations are derived to des-
cribe the effluent concentrations for a semi-infinite column with
constant and variable input solute concentrations. Predicted and

measured breakthrough curves are compared for both cases.

Marinc, M.A. (1974), Distribution of contaminants in porous media flow,

Water Resour. .Res., 10, 1013-1018.

A mathematical analysis is presented for the simultaneous dispersion
and adsorption of solute within homogeneous, isotropic, saturated
porous media in semi-infinite, steady, unidirectional flow fields.
The solutions predict the distribution of contaminants resulting
from variable source concentrations.

Marino, M.A. (1978), Flow against dispersion in nonadsorbing porous media,

J. Hydrology, 37, 149-158.
Analytical solutions are developed for solute dispersion in finite,

one-dimensional, horizontal, steady-state saturated water flow
fields where flow and dispersion are opposed. Radioactive decay of
‘solute is considered. Time-dependent solute concentration is main-
tained at the input boundary. The solutions are useful for analys-
ing possible prevention of the spread of contaminated water by a
flow of fresh water.

Marino, M.A. (1978), Flow against dispersion in adsorbing porous media,

J. Hydrology, 38, 197-205.
A mathematical analysis is presented for the simultaneous dispersion

and adsorption of a solute in finite porous media where water flow
and solute dispersion are opposed. The flow field is one-dimensional,
heterogeneous and steady-state. Solute adsorption is included in the
analysis. Solute concentrations varying with time are enforced at

one boundary. The solutions are useful for analysing possible pre-

vention of the spread of contaminated water in an adsorbing media by
a flow of fresh water.
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Melamed, D., Hanks, R.J. § Willardson, L.S. (1977}, Model of salt flow
in soil with a source-sink term, Soil Seci. Soe. Am. Jd., 41, 29-33,
An implicit finite difference model of non-reactive solute transport
under unsteady, unsaturated flow conditions is presented. The mode]
is solved simultaneously with a water flow model, and includes the
effects of convection, dispersion and also a sink/source term. Model
predictions with and without the sink/source term are compared with
field and laboratory results.

Miller, R.J., Biggar, J.W. § Nielsen, D.R. (1965}, Chloride displacement
in panoche clay loam in relation to water movement and distribution,
Water Resour. Res., 1, 63-73.

A field study of the leaching of a slug of non-reactive solute dur-
ing infiltration and redistribution sequences. Parallel studies for
different methods of surface water application are presented.

Millington, R.J. & Shearer, R.C. (1971), Diffusion in aggregated porous
media, Soil Sei., 111, 372-378.
Aggregation or under-dispersion of either the solid or void compon-
ents of a porous medium imposes additional restrictions on the flow
of fluid through the medium. A mathematical model is presented which
permits calculation of diffusion coefficients in aggregated porous
solids, either saturated or partially saturated with water. Calcu-
lated gas diffusities are compared with experimental data.

Molz, F.J., Davidson, J.M. & Tollner, E.W. (1979}, Unsaturated-zone
water, Reviews of Geophysics & Space Physics, 17, 1221-1239,
General review of research advances in unsaturated zone hydrology:
1974-1978. Covers soil water flow in both rigid and swelling media,
hysteresis, multi-phase flow, point and line sources and sinks,
saturated- unsaturated interaction, coupled solute dnd water flow,
frozen soil transport, coupled water-heat-vapour transport, soil-

root interaction, and developments in numerical methods and sim-
ulation,

Molz, F.J. & Hornberger, G.M. (1973}, Water transport through plant
tissues in the presence of a diffusable solute, Soil Sei. Soec. Am.
Proe., 37, 833-837.

The theory of non-equilibrium thermodynamics is used to develop a
quantitative description of water transport through plant tissues
containing both permeating and non-permeating solutes.

Murali, V. & Aylmore, L.A.G. (1979), Predicting the movement of solutes
in soil profiles, Hydrology & Water Resour. Symp. Perth, 210-214.
A brief review of the limitations of previous analytical approaches,
and an illustration of the ability of numerical methods to describe
reactive solute transport in soils. Experimental results are given
which illustrate the importance of modelling, where the complexities
of flow and solute-soil reactions can be taken into account,

Nielsen, D.R. & Biggar, J.W. (1961), Miscible displacement in soils: I.
- Experimental information, Soil Sei. Soe. Proec., 25, 1-5.

An experimental study of non-reactive solute movement in three
different porous media under saturated and unsaturated, steady- -
state horizontal flow conditions, for different flow rates. Results
are presented as solute concentration breakthrough curves, and their
positions and shapes compared and discussed in terms of physical
differences and flow conditions. This paper is essentially a re-
write of Biggar § Nielsen (1960) in J. Geophys. Res.
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Nielsen, D.R. § Biggar, J.W. (1962}, Miscible displacement: III.Theoret-

ical considerations, Soil Sei. Soc. {dmJ) Proc., 26, 216-221.

Several analytical models are examined for their usefulness in
describing miscible displacement in porous media. These models are
discussed for different types of porous media at various water con-
tents and for different flow velocities, under steady-state con-
ditions, with specific reference to experimental data.

Nielsen, D.R., Starr, J.L., Kirda, C. § Misra, €. (1973), Soil-water and

solute movement studies, Isotope & Radiation Techniques in Sotl
Physics & Irrigation Studies Proc. Symp., 1.A.E.A. & F.A.0. Vienna,

117-133.
The simultaneous transport of water and solutes through soil profiles

is examined theoretically and experimentally using isotopic tracers
for selected conditions in the absence of plants. A methodology for
incorporating the effects of appropriate physical, chemical and
microbiological processes is presented. A detailed examination of
steady-state leaching with nitrogen transformations, leaching during
infiltration and redistribution, and soil solution sampling is
presented. :

oster, C.A., Somnichsen, J.C. & Jaske, R.T. (1970), Numerical solution to
the convective diffusion equation, Water Resour. Res., 8, 1746-1752.
A numerical solution to the convective diffusion equation is dis-
cussed. An implicit finite difference model is presented for two
dimensional non-reactive solute transport which is solved simultan-
eously with the equation for water flow.

Paetzold, R.F. § Scott, H.D. (1978}, Petermination of the apparent dis-
persion coefficient of solutes in unsaturated soil, Soil Sei. Soec,
Am. J., 482, 874-877.
A method is presented to deteymine the apparent dispersion coeffic-
jent of a solute in unsaturated soils at relatively low soil water

flow rates.

Parlange, J.-Y. § Starr, J.L. (1978), Dispersion in soil columns: effect
_of boundary conditions and irreversible reactions, Soil Sei. Soc.
Am, J., 42, 15-18,
A closed form approximate analytical solution is presented which
describes solute transport under steady soil water flow conditions,
including the effects of convectionm, dispersion and adsorptiom.
Detailed discussion on the effect of a finite length of soil column

on solute displacement is given.

Passioura, J.B. (1971), Hydrodynamic dispersion in aggregated media
Theory, Sotl Sei., 111, 339-344.
The dispersion of non-reactive solutes in saturated, aggregated
media under steady-state water flow conditions is examined. A
simplified model, where the effect of aggregation (described by
adding a sink term) is expressed in terms of a dispersion coeffic-
jent, is presented. This approach allows the use of the 'diffusion’
equation with its numerous analytical solutions. The applicability
of the resulting coefficient and its effect on breakthrough curves

is discussed.

1.

Passioura, J.B. § Rese, D.A. (1971), Hydrodynamic dispersion in aggrégated

media. 2. Effects of velocity and aggregate size, Seil Sei., 111,
345-351.




Experimental results for dispersion in saturated, aggregated media
under steady-state water flow conditions are presented, and dis-
cussed in relation to the theory presented in part I. Three dif.
ferent materials are studied over a wide range of mean flow veloc-
ities, and the dependence of the dispersion coefficients on mean
velocity and aggregate size discussed. The criteria for breakdown
of the theoretical model of part I is also studied.

91
84. Passioura, J.B., Rose, D.A. § Haszler, K. (1970), 'Lognorm' - A program

for analysing experiments on hydrodynamic dispersion, Technical
Memorandum 70/6 C.S.I.R.0. Div. Land Res. Canberra.

An analysis of breakthrough curves for solute transport under
saturated, steady-state flow conditions to determine the coeffic-
ients of hydrodynamic dispersion is presented. A computer program
(Fortran} which calculates the Brenner numbers for any displacement
experiment, and which is essential to the analysis, is also given.

85. Peck, A.J. (1971), Transport of salts im unsaturated and saturated soils,
Salinity and Water Use, Ed. T. Talsma and J.R, Philip, MacHillan,
109-123.
An introductory review paper describing the processes and their
relative importance on salt transport, particularly in the plant
environment. Considers molecular diffusion, convection, adsorption,
ion exchange as well as the effects of porous medium structure and
unsaturated flow. Leaching and surface accumulation of salts are
mentioned as typical applications of salt transport theory,

86. Perkins, T.K. § Johnston, 0.C. (1963), A review of diffusion and dis-
persion in porous media, Soc. Pet. Eng. J., 3, 70-84.
An extensive review of studies of dispersion in saturated porous
media. Molecular diffusion, dispersion, and a number of variables
which can influence dispersion are discussed.

87. Pinder, G.F. § Cooper, H.H. (1970}, A numerical technique for calculating
the transient position of the saltwater front, Water Resour. Res.,
6, 875-882.
A numerical method using characteristics is presented to determine
the unsteady-movement of the saltwater front in coastal aquifers.
The A.D.I. method is used to solvée the groundwater flow equation for ¢
the two dimensional problem. The method readily extends to irreg-
ular geometry, and to non-homogeneous aquifers. Numerical results
are compared with two analytical solutions.

88, Pinder, G.F. § Gray, W.G. {1976}, Is there a difference in the finite
- element method?, Water Resour. Res., 12, 105-107.
The convective-diffusive transport of a non-reactive solute is anal-
yzed to demonstrate the relationship between the finite element and
finite difference methods of approximating the differential equationms.

89. Pinder, G.E. & Shapiro, A. (1979}, A new collocation method for the

' solution of the convection-dominated transport equation, Water
Resour. Res., 15, 1177-1182.
An orthogonal collocation method using a modified hermitian basis
function is developed which, when solving the one-dimensional
convection-dominated solute transport equation, provides an accurate,
efficient and oscillation free solutlon with little numerical dif-
fusion.

90. Rao, P.$.C., Davidson, J.M., Jessup, R.E. § Selim, H.M. (1979), Evaluation
of conceptual models for describing nonequlllbrlum adsorption-
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Rose,

ils, Sotl Sei. Soc.

desorption of pesticides during steady flow in so
Am. J., 43, 22-28.

Experimental breakthrough curve
models for describing the non-equilibrium adsorption-desorption of

s are used to evaluate two conceptual

pesticides in porous media under steady-state saturated flow con-

ditions.

D.A. (1977), Hydrodynamic dispersion in porous materials, Sotl Set.,
123, 277-283.

A discussion of aspects of the hydrodynamic dispersion of a tracer
in porous media under steady, saturated flow conditions. The use

of superposition to obtain breakthrough curves for pulsed and
periodic tracer inputs, the form of dispersion coefficients in
terms of dimensionless groups of parameters, and the mechanisms
underlying dispersion are discussed.

Rose, D.A. § Passioura, J.B. (1971}, The analysis of experiments on

Ross

Rubin, J. § James,

Saffman, P.G. (1959), A theory of dispersion in a porous medium,

hydrodynamic dispersion, Sotl Sei., 111, 252-257.

A procedure for analysing experiments on hydrodynamic dispersion
when under steady-state, saturated flow conditions. The analysis
can only treat dispersion caused by interactions between molecular
diffusion and convection, and not complex chemical interactionms.
The analysis is supported by experimental evidence. Several con-
ditions which cause deviations from the analysis are discussed, as
are alternative methods of analysis.

, B. § Koplik, C.M. (1979), A new numerical method for solving the
solute transport equation, Water Resour. Res., 15, 949-955.

A numerical model for solute transport in a saturated, steady-state
quasi three-dimensional porous media is presented, and its use il-
justrated by a case study. The water flow field is approximated by
a network of stream tubes and a Green's function solution used for
each streamtube. Effects of mass transport, chemical interactionm,
hydrodynamic dispersion and radioactive decay are incorporated. The
approach permits computational efficiencies and ease of represent-
ation of small discontinuities with more physically-oriented results

compared to previous methods.

solutes in saturated porous media: Galerkin method applied to
equilibrium-controlled exchange in unidirectional steady water flow,

Water Resour. Res., 9, 1332-1356.
The relevant equations of reactive solute transport are formulated,

and their solution described using a Galerkin finite element method.

Onie-dimensional saturated, steady-state flow conditions apply. The
utility of the numerical solution is demonstrated by means of sev-
eral computed examples, and the role of some of the relevant system

characteristics explored.

Mech., 6, 321-349.
A theory is presented for dis

ditions when dispersion is primarily due to mechanical dispersion.
Theoretical results are compared with published experimental data,
and remarks made concerning dispersion when Darcy's law is not

obeyed.

R.V. {1973}, Dispersion—affected transport of reacting

J. Fluid

persion of a non-reactive solute flowing
through a saturated porous medium under steady-state fluid flow con-
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Saffman, P.G. (1959), Dispersion due to molecular diffusion and macro-
scopic mixing in flow through a network of capillaries, J. Fluid
Mech., 7, 194-208.

A theory is presented for. dispersion of a non-reactive solute undexr
saturated, steady-state flow conditions for the case where both
molecular diffusion and mechanical dispersion are important. Com-
parisons are made between theoretical results and experimental ob-
servations of dispersion in flow through granular beds.
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An analysis of the transport of non-reactive solute in saturated
porous media for slug and continuous injection of solute in one
and two dimensional uniform flow fields, and converging and diverg-
ing radial flow fields. A series of dimensionless type curves of
concentration vs time are presented to permit direct analysis of
field data (dispersivity and kinematic porosity) using curve match-
ing techniques.

Schwartz, F.W. (1977), Macroscopic dispersion in porous media: the
controlling factors, Water Resour. Res., 13, 743-752.
The dispersive character of natural groundwater systems resulting
from large scale variations in hydraulic conductivity is investig-
ated wsing stochastic analysis. Several controlling parameters are
identified and their significance and influence demonstrated. A
theoretical method for estimating dispersion within large scale
geological systems using statistical techniques is suggested.

Scott, H.D. § Paetzold, R.F. (1978), Effects of soil moisture on the
diffusion coefficients and activation energies of tritiated water,
chloride and metribuzin, Soil Sei. Soc. 4m. J., 42, 23-27.
Diffusion coefficients for tritiated water, chloride and matribuzin
are determined in captina silt loam as functions of soil water con-
tent and soil temperature.

100. Selim, H.M., Davidson, J.M. § Rao, P.S.C. (1977), Transport of reactive

solutes through multilayered soils, Soil Sei. Soe. Am. J., 41, 3-10.
A study of reactive solute transport through saturated and umsatur-

ated multilayered soils using laboratory experiments and a numerical
finite difference model. Steady-state water flow conditions apply,

and the model includes convection, dispersion, adsorption/desorption
and sink/source effects.

101. Selim, H.M. § Mansell, R.S. (1976}, Analytical solution of the equation

for transport of reactive solutes through soils, Water Resour. Res.,
12, 528-532,

Mathematical solutions for reactive solute transport under steady-
state flow conditions in a finite column are presented for a number
of surface boundary conditions. The effects of convection, dis-
persion, linear adsorption and a sink/source term are included.
Comparisons are made with other solutions subject to different
boundary conditions. See also comment by Parlange and Starr and
author's reply in same journal, Vol. 13, 701-704.

102. Shamir, U.Y. § Harleman, D.R.F. (1967), Numerical solutions for dispers-

ion in porous mediums, Water Resour. Res., 3, 557-581.
A numerical implicit finite difference method is presented for
solving problems of dispersion in steady, saturated three-dimensional
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fiow fields where the miscible fluids have the same density and
viscosity. The model is developed and tested for two-dimensional
problems where exact or approximate analytical solutions exist,
then extended to three-dimensions. An emphasis is placed on the
efficiency of the mumerical scheme, which is shown to be independ-
ent of the flow fluid geometry.

103. Skopp, J. & Warrick, A.W. (1974}, A two-phase model for the miscible
displacement of reactive solutes in soils, Sotl Seci. See. Am. Proc.,
38, 545-550.
Reactive solute transport with convection, diffusion and adsorption
under saturated, steady-state water flow conditions is studied using
an analytical model. A distinctionm is made between mobile and im-
mobile soil-water regions, and the solution gives solute concen-
tration breakthrough curves. Comparisons are made with published
éxperimental data.

i04 Smiles, D.E., Perroux, K.M., Zegelin, S.J. & Raats, P.A.C, (1981), Hydro-
dynamic dispersion during constant rate absorption of water by soil,
Soil. Sci. Soc., Am. J., 45, 453-458.
Experimental study of dispersion of salt under unsaturated unsteady,
constant flux adsorptiom into an initially uniform soil. Quasi-
analytical methods are presented which predict the water and solute
profiles using a constant solute dispersion coefficient. The data
presents no evidence to reject the piston flow model during transient
flow at relatively low soil water contents.

105. Smiles, D.E. § Philip, J.R. (1978), Solute transport during absorption of
water by soil: laboratory studies and their practical implications,
Soil Sei. Soe. Am. J., 48, 537-544.

An experimental study of non-reactive solute transport during ab-
sorption into uniform horizontal soil columns under unsteady constant
moisture concentration flow conditions in a sand, Various initial
moisture contents with either displacement of concentrated soil sol-
ution by dilute solution or vice versa are included. Both water and
solute preserve similarity in terms of distance divided by the square
root of time. The dispersion coefficient could be considered veloc-
ity independent and moisture content independent. Observed piston-
like displacement of initial water by the adsorbed water questions
- basis of mobile and immobile water fractions (in this material at

least).

106. Smiles, D.E., Philip, J.R., Knight, J.H. § Elrick, D.E. (1978), Hydro-
dynamic dispersion during absorption of water by soil, Soil Sei.
Soc. Am. J., 42, 229-23%.
Experimental study of hydrodynamic dispersion of low concentration
non-reactive solute during absorption into horizontal columns of
sand with initially uniform moisture and solute contents. The
initial soil solution contains a relatively high solute concentration.
Both water and selute concentration profiles preserve similarity in
terms 'of distance divided by the square root of time implying that
the dispersion coefficient is imsensitive to pore water velocity.

107. Starr, J.L., De Roo, H.C., Frink, D.E. & Parlange, J.-Y. (1978}, Leaching
characteristics of a layered field soil, Soil Sei. Soe. Am. J.,
42, 386-391.
A field study of leaching characteristics of a layered soil (fine

sandy loam over coarse sand) above a water table. The effect of air
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entrainment on the rate of infiltration under ponded conditions ig
observed. The movement of a slug of solute under ponded infiltrat.-
ion conditions is measured under steady-state conditions. Solute

movement is in fingers of flow below where the flow becomes unstable,

Effects of field spatial heterogeneity, untrapped air, and experi-
mental techniques on the observed results are discussed.

108, Starr, J.L. & Parlange, J.-Y. (1976), Solute dispersion in saturated soij
columns, Soil Sei., 121, 364-372.
An experimental study of non-reactive solute dispersion in vertical,
water saturated soil columns. The influence of flow rate, directiop
of flow, and the density difference of the displacing solution on
the amount of dispersion are studied. An explicit finger model is
postulated to explain the failure of the diffusion model to predict
breakthrough curves for the neutrally and overstable configurations,
(ie when the density difference between the solutions is zero, and
dense over less dense respectively) and to explain changes in shape
of the breakthrough curves for the unstable configuration.

109. Starr, J.L. § Parlange, J.-Y. (1979), Dispersion in soil columns: the
snow plow effect, Soil Sei. Sce. dm. J., 43, 448-450,
The exchange and transport of cations are studied in a saturated
s0il column under steady flow conditions. The soil has a low cation
. exchange capacity. Displacement of a labelled solute is by an um-
'73 labelled solution of much greater solute concentration. A theoret-
ical approximation is developed which predicts the phenomenon
adequately.

110. Tang, D.H. & Babu, D.K. (1979), Analytical solution of a velocity depend-
ent dispersion problem, Water Resour. Res., 15, 1471-1478.
An analytical solution assuming radial flow for the convective-
dispersive transport of solute under saturated, steady fluid flow
conditions is developed. The solution is significantly different
to existing approximate analytical solutions.

111. Terkeltoub, R.W. § Babcock, K.L. (1971), A simple method for predicting
salt movement through soil, Soil Sei., 111, 182-187.
A simplified model is presented to calculate the distribution of
salt in a porous medium at the end of an infiltration period.

112, Todd, R.M. § Kemper, W.D. (1972), Salt dispersion coefficients mnear an
evaporating surface, Soil S¢i. Soe. Am. Proe., 36, 539-543.
An experimental study of salt and water movement near an evaporating
surface under steady, unsaturated water flow conditions for both a
clay loam and a sand.

113. Umari, A., Willis, R. § Liu, P.L.F. {1979), Identification of aquifer
dispersivities in two dimensional transient groundwater contaminant
transport: an optimization approach, Water Resour. Res., 15, 815-
831.

A finite element model of the water and solute transport equations
for saturated, two-dimensional unsteady-conditions is presented.
An optimization algorithm is developed to allow unknown aquifer
: ) dispersivities to be calculated to minimize the discrepancy between
: calculated and observed values of the concentration field. The re-

- verse problem of choice of data input to calculate the concentration

field is studied, and attention given to the model sensitivity for

each of the input parameters.
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vachaud, G., Wierenga, P.J., Gaudet, J.P. & Jegat, H. (1976), Simulation

of miscible displacement in unsaturated porous media, System Simu-
lation in Water Resources,Ed. G.C. Vansteenkiste, North Holland,
129-140.

A review of a number of physical approaches toward solving solute
dispersion problems in saturated and unsaturated porous media, and
a discussion on the relative merits of these approaches.

ﬁé, van de Pol, R.M., Wierenga, P.J. § Nielsen, D.R. (1977), Solute movement

il

in a field soil, Sotl Sei. Soc. Am. J., 41, 10-13.

A study of non-reactive solute {chloride and tritium) and water
movement under field conditions with steady-state soil water flow.
Results are compared to an analytical solution.

116. Van Genuchten, M.Th., Davidson, J.M. & Wierenga, P.J. {1974), An evalu-

ation of kinetic and equilibrium equations for the prediction of
pesticide movement through porous media, Sotl Sei. Soe. Am. Proc., 88,
25-35. :

An experimental and numerical study of reactive solute transport in
a saturated loam soil under steady-state water flow conditioms. An
explicit finite difference (CSMP) solute model is used to compare
numerical results using three different absorption-desorption re-
lationships with the experimental data, for a range of pore water
velocities. An empirical model is developed which gives reasonable
comparisons over the range of pore water velocities. This includes
a mobile-immobile water distinction.

117. Van Genuchten, M. Th. § Wierenga, P.J. (1974}, Simulation of One-

Dimensional Solute Transfer in Porous Media, New Mexico State Univ.
Ag. Exp. Stn., Bulletin 628, )

An explicit finite difference model (CSMP) of one-dimensional react
ive solute flow under steady water flow conditioms is presented.
Problems of numerical dispersion, stability and boundary conditions
are discussed. Examples of the model's use are presented, and com-
parisons made between analytical and numerical solutions.

118. Van Genuchten, M. Th. § Wierenga, P.J. (1976), Numerical solution for

convective dispersion with intra-aggregate diffusion and non-linear
adsorption, System Simulation in Water Resources, Ed. G.C.
Vansteenkiste, North Holland, 275-291.

An explicit finite difference (CSMP) model of reactive solute trans-
port in unsaturated, steady flow conditions where intra-aggregate
diffusion and hysteretic nom-linear adsorption/desorption are in-

. cluded, is presented. The model differentiates between mobile and

immobile water to account for the observed asymmetry in the effluent
concentration curves. Comparisons are presented with analyticdl and

experimental results.

119. Van Genuchten, M.Th. § Wierenga, P.J. (1976}, Mass transfer studies in

sorbing porous media I. Analytical solutions, Soil Sei. Soc. Am.
J., 40, 473-480.

An analytical solution is presented for the movement of reactive
solutes theough a rorbing porous medium under unsaturated steady-
state water flow conditions. The liquid phase is divided into
mobile and immobile regions. The solution gives the effluent con-
centration-time relationship and depends upon four dimensionless
parameters, and a study of the solution sensitivity to each para-
meter is presented. '
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120. Warrick, A.W., Biggar, J.W. § Nielsen, D.R. (1971), Simultaneous solute
and water transfer for an unsaturated soil, Water Resour. Res., 7,
1216-1225,

The simultaneous flow of water and solute during infiltration is
studied both in the field and numerically. Two approximate quasi-
analytical solutions are presented and used to study the influence
of the initial soil water content and the infiltration rate on
solute movement.

121, Warrick, A.W., Kichen, J.H. & Thames, J.L. (1972), Solutions for miscible
displacement of soil water with time-dependent velocity and dispers-
ion coefficients, Soil Sci. Soc. 4m. Proc., 36, 863-867.
Simplified analytical solutions are presented to describe non-
reactive solute flow for both step and slug inputs during infilt-
ration. Numerical calculations are made and compared using both
constant and time-dependent pore water velocities and solute dis-
persion coefficients. The approximate analytical solutions are
used to predict experimental breakthrough curves.

122. Weeks, 0.L., Stewart, G.L. & Weeks, M.E. (1976), Measurement of non-
exchanging pores during miscible displacement in soils, Soil Sei.,
122, 139-144.
An experimental study of non-reactive solute movement under steady-
state, saturated conditions for solute infiltration and solute
leaching under different flow velocities. The study is designed to
estimate the proportion of pore space not readily exchangeable with
the displacing solution, and to determine whether previously report-

ed values reflect primarily non-exchanging pore space or only slowly
conducting pore space.

123. Wierenga, P.J. (1977), Solute distribution profiles computed with steady-
state and transient water movement models, Soil Sci. Soc. Am. g,
41, 1050-1055.
Solute concentration distributions obtained using a steady-state and

. an unsteady-state model are compared. A numerical study and experi-

mental data is used to illustrate that the steady-state model could
adequately predict solute profiles and effluent concentration dis-’
tributions following sequences of infiltration/redistribution, even
when the infiltration interval varies. Adequate predictions rely on
suitable choices for the average water content and a constant dis-

persion coefficient, and the paper discusses the basis for these
choices.

124, Wood, A.L. § Davidson, J.M. (1976), Fluometuron and water content distrib-
utions during infiltration: measured and calculated, Soil Sei. Soc.
Am. Proc., 39, 820-825,. ' i
An explicit finite difference model for reactive solute flow coupled
with an implicit finite difference model for water flow under un-
steady, unsaturated flow conditions are solved simultaneously,
Solute is allowed to be adsorbed/desorbed using a Freundlich equil-
ibrium type relationship. The influence of initial soil water con-
tent and water application rate on the transport of reactive solute
is studied numerically and experimentally. :

125. Wooding, R.A. (1972), Perturbation analysis of the equation for the
transport of dissolved solids through porous media I. Linear
problems, J. Hydrology, 18, 1-15.
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The technique of matched asymptotic expansions is applied to react-
ive solute transport in steady one-dimensional flow fields assuming
linear exchange equilibrium and constant diffusivity. Three cases
illustrative of the perturbation technique are treated.

126. Wooding, R.A. (1972), Perturbation analysis of the equation for the
transport of dissolved solids through porous media II. Basic non-
linear problem, J. Hydrology, 16, 105-116.
Singular perturbation methods are used to treat analytically the
transport of reactive solute in steady one-dimensional flow fields
in a porous column assuming non-linear exchange equilibrium and a
concentration dependent diffusion coefficient.

127. Wooding, R.A. (1972}, Perturbation analysis of the equation for the
transport of dissolved solids through porcus media III. Influence
of boundary conditions, J. Hydrology, 16, 241-245.
The asymptotic properties of solute transport involving first-order
irreversible reaction in a finite column of porous material are
described for a linearized system when the Danckwerts boundary con-

ditions apply.

coefficient in unsaturated plainfield sand, Water Resour. Res., 14,
582-588, .

The relationship between longitudinal and transverse dispersion
coefficients, pore water velocity and the effective diffusion co-
efficient is determined experimentally for a range of pore water
velocities in a vertical, unsaturated column of sand under steady

flow conditions.
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APPENDIX B »
SOLUTION OF TRIDIAGONAL EQUATIONS USING THE THOMAS ALGORITHM

The set of tridiagonal simultaneous equations to be solved was given by
equation 2.10 and is

A+ Bh +Ch = D,
Ash, + Bjh, + C;h, - o,

Aghy + Byh, + Cyhg - D, B.1
Aoy * By * Cabuer T Dy

The solution of this set of N-1 equations in N+1 unknowns requires the
application of a top and bottom boundary condition to eliminate the terms in
h, and hy,q respectively. The method of solution involves two sweeps through
the equations as follows:

(a) Preparatory Sweep

For the first equation, Ayh; is rewritten in terms of hy and hg by the
application of the top boundary equation giving

B,h, + C,h, = D, B.2
D2 CZ
h, =B———B-—h3 = Z, - Y,h, B.3
2 z
D,
where Z, = ']'3; B.4
C2
Y, = §, B.5

For the second equation
AS[ZZ - Yzha) + B3h3 + CSth = D3
(By - AY,) hy = Dy - AjZ, - Cghy B.6

WL Dt Az ¢
3 T B, TAY, T B, - Ay, ¢

= Z, - Ysh, B.7
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Similarly for the third equation

h, = Z, - Y,h, B.10
D - AZ
where 7, = ——— 3 B.11

Therefore in general

hi = Z: - Ylh(1+1) \ B.13

Di - AiZy:
where 7. = L 7 "i%(i-1)

B.14
tooBy - AY g
Y G B.15
tOBy - AVl

The definitions of Z, and Y, for the first equation conform if Zy, XYy =0,
(b} Solution Sweep

For the last (Nth) equation the term Cyhysg is eliminated by the applic-
ation of the bottom boundary condition. Therefore

hy = Iy B.16
Knowing hy we can obtain
h(N-l) = Z{N—l) - Y(N—l)hN . B.17
or in general

Ry = Zaoy - YoM B.18




The solution then progresses backwards to give the values of h between
hy and h,. Since the boundaries are at 1 and N+1, the boundary condition
equation must be solved using the values of h just determined to give h; and

h

N+1"




CURVE FITTING USING SPLINE TECHNIQUES

Introduction

The numerical solution of either equation 2.1 or 2.2 requires that the

hydrologic characteristics h(9) and K(8) be defined over the range covered

by the simulation. These characteristics are determined experimentally, and

usually cannot be represented by simple algebraic relat10nsh1p5 A convenient

iand accurate method of defining the characteristics is given by the interpolat-

~ing spline technique.

% A mathematical spline is a piecewise polynomial of degree 'm' which has

~cont1nuous derivatives at the junction points where two polynomials meet. The
ccubic spline (m = 3) is preferred because of its smoothness and its ability to
“accurately reflect localised variations. Its use in the present context, for
~defining h(8) and Cg(h} characteristics, has been detailed by Erh (1972). How-
ever a cubic spline occasionally produces extraneous inflection points in the

- curve. To remove these unwanted inflections an approach, which mathematically
approximates the applying of a tension to the curve by pulling on its end

. points, was developed by Schweikert (1966) and Cline (1974¢). The resulting
'spline in tension' is still constrained to pass through the given points. By
“yarying the amount of 'tension' a range of interpolating curves can be deter-
mined, from a highly curved low tension spline indistinguishable from the
ordinary cubic spline, to a nearly-polygonal high tension spline.

The 'spline in tension' is developed from a differential equation, which
involves values of the spline's second derivative for several values of the
independent variable. A tridiagonal set of linear equations for the unknown
second derivatives results from the requirement that the function and its
first two derivatives are continuous. These must be solved before the spline
can be evaluated.

Theory

Consider a set of n data points xj where x; < x; £ x;. The corresponding
set of functional values is y, £ yj < y, where in general y; = f(x;). A con-
stant, non zero 'tension factor' equal to ¢ is also defined. The desired
function f must be real-valued and have two continuous derivatives.

Let f" - o®f (which is necessarily continuous) vary linearly over each

interval [x;, x;,,], 1 = 1,...,n, Then for xj < X £ Xj,,,

f(x) - o?£(x) = [£'(x;) - o?yidlxg,, - x1/k;
* [fn(xi+1) _ UZYi+1}[X - Xi]/Ki c.1
where Cky =[xy, -x3] for i o= 1,...,(n-1)

The solution to equation C.1 is
£(x) = [£"(x3)/0%*]sinh[o(x54, - x)]/sinh(ok;)
+ [yy - £70x3) /0% x4, - x1/k;
+ [£"(x5,,)/0%]sinh[o(x - x3)1/sinh(ok;)

+ [yger - £'0x340/0%10x - x317x5




for x; < x £ x;, . That equation C.2 is the solution of equation C.1 is
readily shown by differentiation. Clearly f is continuous over the interval
Xj = X = Xj4y, and it follows from equation C.1 that £" and thus f' are con.
tinuous, provided a unique solution exists for f'0%x3), 1 =1,...,n.

Differentiating equation C.2 and rearranging gives

fr(x) = {f”(xi)/cz]{I/Ki -0 cosh[c(xi+l - X)]/Sinh(GKi]}

+ [£'(xj4,)/0* Ho coshlo(x - x;)1/sinh{ox;) - 1/k;}

* Dyie, - v €.3

Evaluating and equating the right and left sided derivatives at x;, for %
i=2,...,(n-1}, and rearranging gives

i - vid/ey - Dys - yio Iy,
=[x )/ Nk, - o/sinh{ok; )}
+ [£7(x1) /0> o cosh(ok;)/sinh (oK) - 1/k;
*+ 0 cosh(okj_,)/sinh(ok;_,} - 1/ .}

1-1

+ [£9(x14,)/02H1/k; - ofsinh(oky)} .4

To complete the solution, the boundary conditions need to be specified. If
the derivatives y,' and Yo are known, then f must satisfy £'(x,) = ¥y,' and
£ {xy) = vy, Differentiating equation C.2 at x = X; and x = x,, and then
equating to y,' and y, respectively, gives

vy = e /0®1l1/k, - o cosh(ok,)/sinh (ok,)]
; + [£'(x,) /0% ][o/sinh(ok,} - 1/x,] + [y, - v11/%, C.5
yno= [E'0-)/02 11k, - o/sinh(ok, )]

+ [£7(x,) /0% 1[0 cosh(ok,_,)/sinh(ok,_,) - 1k

s ey

n-1

* Iyn - v Ik, .6

The tridiagonal linear system defined by equations C.4 to C.6 for the unknown
f“(xi)/oz, i=1,...,n is strictly diagonally dominant and thus nonsingular.
The solution of equations €.4 to C.6 is equivalent to the solution of the
original differential equation C.1 with its boundary conditions. Once the
f”(xi)/oz, i=1,,..,n are determined, the solution is given by equation C.2.
For the extreme values of the tension factor g, it is seen from equation
C.1 that if 0 » 0, f" is continuous and varies linearl¥ between the data points
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X, ¥ 7 1, ..0,00 This is the standard cubic spline. As 0 + =, equation C.1
reduces to £, and is linear from point to point, or piecewise linear in gen-
eral. Hence the splines under tension will approach cubic splines for low
tension factors and piecewise linear functions for large tension factors.
For o' < 0.001 the resulting curve is virtually indistinguishable from a
cubic spline, and for ¢' > 50 it is almost piecewise linear. A usual value
is o' = 1,

The use of G as detailed above results in nonlinear behaviour, because
all the data points x; and hence kj are multiplied by a constant factor.
This is eliminated by using a 'normalised' tension facter o' where

g = o(xp - x,)/(n-1) c.7

Structure of the Spline Function Subprograms

Two computer subprograms are used to implement the spline under tension.
The first is called once only for a given set of data, and sets up and solves
the tridiagonal system to determine the spline function. It incorporates a
routine to compute the end slopes y,' and y by quadratic interpolation us-
ing the first three and last three data points respectively. The -second sub-
program interpolates a curve at a given point (x) using the spline in tension
determined from the first subprogram. A further call to the second subprogram
calculates the value of the derivative at the specified point x).

The computer routines were kindly supplied by D. Doran of the School of
Civil Engineering, University of N.S.W. (personal communication) and are based
upon those given by Cline (19745) .

Application

A preliminary spline function is fitted to the raw soil water pressure
(the x; values) and water content {the y; values) data. The corresponding
first derivative function (this corresponds to the specific water capacity
which is also required for the solution of equation 2.1 or 2.2) is then cal-
culated. Any irregularities in the first derivative function are then re-
moved by making small adjustments to the x; values until a smooth first
differential curve is obtained. The resultant spline function is then ready
for use in the soil water program of Chapter Z.
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