Cave temperature study could improve climate change predictions

Posted 11 June 2014

Dr Mark Cuthbert inspects a speleothem in Wellington Caves. (Photo credit: Martin S. Andersen)

Researchers studying the hydrology of Wellington Caves in central NSW have made a discovery that challenges a key assumption used to reconstruct past climates from cave deposits.

Published in Nature's open access journal Scientific Reports, the research found that there can be a 1.5 degree Celsius difference between the temperature of the air in the cave and the drip water that forms the stalactite.

Stalactites and other cave formations – collectively known as speleothems – form when rainwater drips from the surface into the cave system, picking up minerals along the way that solidify once exposed to the cave air.

Scientists had previously assumed that speleothems formed at a temperature equal to the average temperature outside the cave and used this assumption to construct records of past climate variations, says lead author Dr Mark Cuthbert, holder of a European Community-funded Marie Curie Research Fellowship at UNSW's Connected Waters Initiative.

"However that assumption had never been tested," he says. "The 1.5 degree difference is very significant if you're looking at past climate change. It is similar to the kind of change in temperature that we've had in the last 12,000 years naturally during the Holocene."

The difference in temperature is attributed to evaporative cooling, which occurs as the water moves along the cave wall before reaching the point at which it drips and forms the speleothem.

"If you were looking at a speleothem formed in that environment and didn't know this process of evaporative cooling was happening, you might jump to the wrong conclusions, in either direction, about what the climate outside the cave was like at the time the speleothem formed," says co-author Monika Markowska, a Research Scientist at the Institute for Environmental Research at the Australian Nuclear Science and Technology Organisation (ANSTO).

ANSTO researchers have developed expertise in modelling climate change using nuclear techniques such as neutron activation soil analysis and carbon 14 dating.

The research team also includes Professor Andy Baker, Director of the Connected Waters Initiative (CWI) and other CWI researchers.

The same researchers recently found that other important evaporative effects occur between the soil and the cave that also need to be taken into account when interpreting speleothems as records of climate change.

"Further experimental work is underway to investigate the influence of the geometry, orientation, the thermal properties of a particular formation, and the water film thicknesses, on the relative cooling rate," the researchers say in their paper.

Dr Cuthbert hopes that ongoing research will lead to numerical models that take into account all the different variables in a cave system that might influence climate change calculations.

Speleothem chemistry is one of several methods used to reconstruct past climates alongside other techniques including sediments, ice cores, trees and corals. Caves can yield particularly high-resolution records going back several hundred thousand years.

Links:

Latest news

Ancient water to drain from farmland without ongoing joint management

Ancient water to drain from farmland without ongoing joint management

1 July 2020

The management of withdrawals of ground water in the Central West remains an area of hotly-contested debate. Associate Professor of Hydrogeology Bryce Kelly has spent over a decade studying groundwater in the Central West, and has credited groundwater with “saving rural communities from collapse”, but its potential for future drought-proofing depends on how successfully it’s managed. He says current withdrawals “will only be sustainable if the Narromine region gets flooded frequently enough to balance the volume of groundwater extracted."

Read more…

GWI Global Water Matters Podcast

21 June 2020

The UNSW-GWI Global Water Matters Podcast was launched in 2020 to share interesting and important water-related developments and insights from global experts across the broad spectrum of water-related disciplines. Born from the demand to continue the Water Issues Commentary seminar series under the constraints of social distancing, new episodes are released monthly.

Read more…

The mystery of Thirlmere Lakes

The mystery of Thirlmere Lakes

22 May 2020

During the past decade, water levels in the Thirlmere Lakes have varied from full in 2016 to completely dry between October 2018 and February 2020. These variations have raised concerns with the local community and left them wondering; "Where has all the water gone in Thirlmere Lakes?"

Thirlmere Lakes National Park, located south-west of Sydney in an ancient river meander, contains five lakes – Lake Gandangarra, Lake Werri Berri, Lake Couridjah, Lake Baraba, and Lake Nerrigorang. 

Two WRL research teams (EcoEng and Connected Waters) have investigated the water balance budget and surface-groundwater interaction in Thirlmere Lakes. These investigations were supported by coordinated research projects with ANSTOUniversity of Wollongong, and the NSW Department of Planning, Industry and the Environment (DPIE). In collaboration with these groups, WRL engineers undertook extensive fieldwork between 2017 and 2020 to monitor the site, including remote sensing bathymetry surveys, deploying micro-meteorological stations for measuring evapotranspiration, and installing a piezometer network for groundwater investigations.

Read more about the research findings here.  


Read more…

Subsidies drive Murray-Darling Basin extractions as environment loses

Subsidies drive Murray-Darling Basin extractions as environment loses

21 May 2020

Subsidised irrigators extracted up to 28 per cent more water than those who received no funds under a national Murray-Darling Basin irrigation efficiency program, a new study has found.

Read more…

Groundwater resources in Africa resilient to climate change

Groundwater resources in Africa resilient to climate change

8 August 2019

Groundwater – a vital source of water for drinking and irrigation across sub-Saharan Africa – is resilient to climate variability and change, according to a new study.

Read more…